Wolfram Computation Meets Knowledge

De Broglie Angular Frequency by Momentum

The de Broglie angular frequency is the angular frequency associated with a massive particle in motion according to quantum mechanics.

The de Broglie angular frequency equals half the square of the particle momentum divided by the reduced Planck constant and mass.

Formula

QuantityVariable["ω", "AngularFrequency"] == (Quantity[1/2, "ReducedPlanckConstant"^(-1)]*QuantityVariable["p", "Momentum"]^2)/QuantityVariable["m", "Mass"]

symbol description physical quantity
ω angular frequency "AngularFrequency"
m mass "Mass"
p momentum "Momentum"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["De Broglie Angular Frequency by Momentum"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[
 ResourceObject["De Broglie Angular Frequency by Momentum"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "De Broglie Angular Frequency by Momentum"], {QuantityVariable[
   "p","Momentum"] -> 
   Quantity[1.67`*^-27, ("Kilograms" "Meters")/("Seconds")], 
  QuantityVariable["\[Omega]","AngularFrequency"] -> 
   Quantity[1, ("Radians")/("Seconds")]}]
Out[3]=

Source Metadata

Publisher Information