Wolfram Computation Meets Knowledge

Péclet Number Using Thermal Diffusivity

The Péclet number is a class of dimensionless numbers relevant in the study of transport phenomena in a continuum. It is defined to be the ratio of the rate of advection of a physical quantity by the flow to the rate of diffusion of the same quantity driven by an appropriate gradient.

The Pe'clet number for heat transfer equals the product of the characteristic length and characteristic speed divided by the thermal diffusivity.

Formula

QuantityVariable["Pe", "PecletNumberHeatTransfer"] == (QuantityVariable["l", "Length"]*QuantityVariable["v", "Speed"])/QuantityVariable["α", "ThermalDiffusivity"]

symbol description physical quantity
Pe Péclet number for heat transfer "PecletNumberHeatTransfer"
l characteristic length "Length"
v characteristic speed "Speed"
α thermal diffusivity "ThermalDiffusivity"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Péclet Number Using Thermal Diffusivity"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Péclet Number Using Thermal Diffusivity"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Péclet Number Using Thermal Diffusivity"], {QuantityVariable[
   "v","Speed"] -> Quantity[1, ("Meters")/("Seconds")], 
  QuantityVariable["Pe","PecletNumberHeatTransfer"] -> 1, 
  QuantityVariable["\[Alpha]","ThermalDiffusivity"] -> 
   Quantity[1, ("Meters")^2/("Seconds")]}]
Out[3]=

Publisher Information