Wolfram Computation Meets Knowledge

Isobaric Process

An isobaric process is a thermodynamic process in which the pressure stays constant.

The final temperature divided by the final volume equals the initial temperature divided by the initial volume. The initial and final pressures are equal. The work done on the system equals the initial pressure times the difference between the initial and final volumes. The heat transferred to the system equals the isobaric heat capacity times the difference between the final and initial temperatures. The entropy change equals the isobaric heat capacity times the natural logarithm of the ratio of the final temperature to the initial temperature.

Formula

{QuantityVariable[Subscript["T", "f"], "Temperature"]/QuantityVariable[Subscript["V", "f"], "Volume"] == QuantityVariable[Subscript["T", "i"], "Temperature"]/QuantityVariable[Subscript["V", "i"], "Volume"], QuantityVariable[Subscript["p", "f"], "Pressure"] == QuantityVariable[Subscript["p", "i"], "Pressure"], QuantityVariable["W", "Work"] == -(QuantityVariable[Subscript["p", "i"], "Pressure"]*(QuantityVariable[Subscript["V", "f"], "Volume"] - QuantityVariable[Subscript["V", "i"], "Volume"])), QuantityVariable["Q", "Heat"] == QuantityVariable[Subscript["C", "p"], "HeatCapacity"]*(QuantityVariable[Subscript["T", "f"], "Temperature"] - QuantityVariable[Subscript["T", "i"], "Temperature"]), QuantityVariable["Δ​S", "Entropy"] == Log[QuantityVariable[Subscript["T", "f"], "Temperature"]/QuantityVariable[Subscript["T", "i"], "Temperature"]]*QuantityVariable[Subscript["C", "p"], "HeatCapacity"]}

symbol description physical quantity
Tf final temperature "Temperature"
Vf final volume "Volume"
Ti initial temperature "Temperature"
Vi initial volume "Volume"
pf final pressure "Pressure"
pi initial pressure "Pressure"
W work done on the system "Work"
Q heat transferred to the system "Heat"
Cp isobaric heat capacity "HeatCapacity"
Δ​S entropy change "Entropy"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Isobaric Process"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Isobaric Process"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Isobaric Process"], {QuantityVariable["Q","Heat"] -> 
   Quantity[-150, "Kilojoules"], 
  QuantityVariable["\[CapitalDelta]\[InvisibleSpace]S","Entropy"] -> 
   Quantity[-700, ("Joules")/("Kelvins")], QuantityVariable[
\!\(\*SubscriptBox[\("T"\), \("f"\)]\),"Temperature"] -> 
   Quantity[150, "Kelvins"]}]
Out[3]=

Publisher Information