Wolfram Computation Meets Knowledge

Mohr's Circle Plane Shear Strain

Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor. Strain is a description of deformation in terms of relative displacement of particles in the body that excludes rigid-body motions.

The shear strain in the new x\[Hyphen]y coordinates increases with the normal strain in the x and y directions (though a larger normal strain in the y direction will increase it more). Increased shear strain in the x\[Hyphen]y coordinates will also increase it.

Formula

QuantityVariable[Subscript["γ", Superscript["x⁣y", "′"]], "Unitless"]/2 == (Cos[2*QuantityVariable["θ", "Angle"]]*QuantityVariable[Subscript["γ", "x⁣y"], "Unitless"])/2 - ((QuantityVariable[Subscript["ε", "x"], "Unitless"] - QuantityVariable[Subscript["ε", "y"], "Unitless"])*Sin[2*QuantityVariable["θ", "Angle"]])/2

symbol description physical quantity
γx⁣y shear strain in new x­y coordinates "Unitless"
θ plane angle "Angle"
γx⁣y shear strain in x­y coordinates "Unitless"
εx normal strain in x direction "Unitless"
εy normal strain in y direction "Unitless"

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Mohr's Circle Plane Shear Strain"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Mohr's Circle Plane Shear Strain"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject["Mohr's Circle Plane Shear Strain"], {QuantityVariable[
\!\(\*SubscriptBox[\("\[Gamma]"\), \("x\[InvisibleComma]y"\)]\),
    "Unitless"] -> 0.00005`, 
  QuantityVariable["\[Theta]","Angle"] -> Quantity[0, "Radians"], 
  QuantityVariable[
\!\(\*SubscriptBox[\("\[Epsilon]"\), \("x"\)]\),"Unitless"] -> 
   0.0001`, QuantityVariable[
\!\(\*SubscriptBox[\("\[Gamma]"\), 
TemplateBox[{"\"x\[InvisibleComma]y\"","\"\[Prime]\""},
"Superscript"]]\),"Unitless"] -> 0.00005`}]
Out[3]=

Source Metadata

Publisher Information