Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
SmoothTransitionFunctions
Guides
Guide to ZigangPan`SmoothTransitionFunctions`
Symbols
Arztanfunction
flexibledeadzonefunction
mylegendPlot
SATF
simplesmoothfunction
smoothAsaturationfunction
smoothdeadzonefunction
smoothgrowthfunction
smoothsaturationfunction
smoothtransitionEfunction
smoothtransitionfunction
ZigangPan`SmoothTransitionFunctions`
f
l
e
x
i
b
l
e
d
e
a
d
z
o
n
e
f
u
n
c
t
i
o
n
f
l
e
x
i
b
l
e
d
e
a
d
z
o
n
e
f
u
n
c
t
i
o
n
[
x
,
R
o
u
n
d
e
d
n
e
s
s
P
o
s
i
t
i
v
e
,
D
e
a
d
Z
o
n
e
B
o
u
n
d
P
o
s
i
t
i
v
e
,
S
l
o
p
e
P
o
s
i
t
i
v
e
,
R
o
u
n
d
e
d
n
e
s
s
N
e
g
a
t
i
v
e
,
D
e
a
d
Z
o
n
e
B
o
u
n
d
N
e
g
a
t
i
v
e
,
S
l
o
p
e
N
e
g
a
t
i
v
e
]
i
s
s
m
o
o
t
h
o
n
(
0
,
∞
)
(
0
,
∞
)
(
0
,
∞
)
(
0
,
∞
)
(
-
∞
,
0
)
(
0
,
∞
)
.
x
i
s
t
h
e
i
n
p
u
t
a
n
d
t
h
e
r
e
s
t
o
f
t
h
e
v
a
r
i
a
b
l
e
s
a
r
e
p
a
r
a
m
e
t
e
r
s
.
R
o
u
n
d
e
d
n
e
s
s
P
o
s
i
t
i
v
e
>
0
a
n
d
R
o
u
n
d
e
d
n
e
s
s
N
e
g
a
t
i
v
e
>
0
d
e
t
e
r
m
i
n
e
h
o
w
s
h
a
r
p
i
s
t
h
e
t
u
r
n
o
n
e
f
f
e
c
t
(
T
h
e
l
a
r
g
e
r
v
a
l
u
e
t
h
e
s
l
o
w
e
r
t
h
e
t
u
r
n
o
n
.
I
t
i
s
b
e
s
t
i
f
R
o
u
n
d
e
d
n
e
s
s
P
o
s
i
t
i
v
e
≤
D
e
a
d
Z
o
n
e
B
o
u
n
d
P
o
s
i
t
i
v
e
a
n
d
R
o
u
n
d
e
d
n
e
s
s
N
e
g
a
t
i
v
e
≤
-
D
e
a
d
Z
o
n
e
B
o
u
n
d
N
e
g
a
t
i
v
e
)
.
D
e
a
d
Z
o
n
e
B
o
u
n
d
P
o
s
i
t
i
v
e
>
0
a
n
d
D
e
a
d
Z
o
n
e
B
o
u
n
d
N
e
g
a
t
i
v
e
<
0
d
e
t
e
r
m
i
n
e
t
h
e
x
-
a
x
i
s
l
o
c
a
t
i
o
n
o
f
t
h
e
t
w
o
t
u
r
n
s
;
a
n
d
S
l
o
p
e
P
o
s
i
t
i
v
e
>
0
a
n
d
S
l
o
p
e
N
e
g
a
t
i
v
e
>
0
a
r
e
t
h
e
s
l
o
p
e
o
f
t
h
e
f
u
n
c
t
i
o
n
i
n
t
h
e
p
o
s
i
t
i
v
e
x
-
a
x
i
s
a
n
d
t
h
e
n
e
g
a
t
i
v
e
a
x
i
s
b
e
y
o
n
d
t
h
e
d
e
a
d
z
o
n
e
,
r
e
s
p
e
c
t
i
v
e
l
y
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
P
l
o
t
f
l
e
x
i
b
l
e
d
e
a
d
z
o
n
e
f
u
n
c
t
i
o
n
[
x
,
1
,
1
.
5
,
2
,
1
,
-
1
.
5
,
1
]
,
{
x
,
-
5
,
5
}
O
u
t
[
1
]
=
S
e
e
A
l
s
o
s
m
o
o
t
h
d
e
a
d
z
o
n
e
f
u
n
c
t
i
o
n
"
"