Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Hypergraph
Guides
Hypergraph Functionality
Symbols
AdjacencyHypergraph
AdjacencyTensor
EnumerateHypergraphs
HighlightRule
HypergraphDraw
HypergraphIncidenceMatrix
Hypergraph
HypergraphRule
HyperMatrixGraph
HyperMatrix
IncidenceHypergraph
SimpleHypergraphPlot
WolframInstitute`Hypergraph`
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
m
1
,
a
1
}
,
{
m
2
,
a
2
}
,
.
.
.
}
]
g
e
n
e
r
a
t
e
s
a
l
l
s
i
m
p
l
e
c
o
n
n
e
c
t
e
d
h
y
p
e
r
g
r
a
p
h
s
o
f
a
g
i
v
e
n
s
i
g
n
a
t
u
r
e
,
w
i
t
h
m
1
e
d
g
e
s
o
f
a
r
i
t
y
a
1
,
m
2
e
d
g
e
s
o
f
a
r
i
t
y
a
2
e
t
c
.
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
s
i
g
n
a
t
u
r
e
,
n
]
g
e
n
e
r
a
t
e
h
y
p
e
r
g
r
a
p
h
s
h
a
v
i
n
g
u
p
-
t
o
n
v
e
r
t
i
c
e
s
.
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
s
i
g
n
a
t
u
r
e
,
{
n
}
]
g
e
n
e
r
a
t
e
h
y
p
e
r
g
r
a
p
h
w
i
t
h
e
x
a
c
t
l
y
n
v
e
r
t
i
c
e
s
.
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
s
i
g
n
a
t
u
r
e
,
v
e
r
t
e
x
S
p
e
c
,
{
c
o
n
n
e
c
t
e
d
,
s
i
m
p
l
e
}
]
s
p
e
c
i
f
y
w
h
e
t
h
e
r
h
y
p
e
r
g
r
a
p
h
s
s
h
o
u
l
d
b
e
c
o
n
n
e
c
t
e
d
o
r
/
a
n
d
s
i
m
p
l
e
.
Examples
(
5
)
Basic Examples
(
5
)
Generate all possible ways to have a single unary and two binary edges together:
I
n
[
1
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
1
,
1
}
,
{
2
,
2
}
}
]
O
u
t
[
1
]
=
,
Generate all hypergraphs with a single edge of each arity up-to 3:
I
n
[
1
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
1
,
1
}
,
{
1
,
2
}
,
{
1
,
3
}
}
]
O
u
t
[
1
]
=
,
,
,
,
Enumerate hypergraphs with 3 binary edges:
I
n
[
1
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
3
,
2
}
}
]
O
u
t
[
1
]
=
,
,
Enumerate only up-to 3 vertices:
I
n
[
2
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
3
,
2
}
}
,
3
]
O
u
t
[
2
]
=
Enumerate hypergraphs with 2 binary edges:
I
n
[
1
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
2
,
2
}
}
]
O
u
t
[
1
]
=
Include non-connected hypergraphs:
I
n
[
2
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
2
,
2
}
}
,
{
F
a
l
s
e
,
T
r
u
e
}
]
O
u
t
[
2
]
=
,
Include connected and non-simple hypergraphs:
I
n
[
3
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
2
,
2
}
}
,
{
T
r
u
e
,
F
a
l
s
e
}
]
O
u
t
[
3
]
=
,
,
,
Include both non-connected and non-simple:
I
n
[
4
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
2
,
2
}
}
,
{
F
a
l
s
e
,
F
a
l
s
e
}
]
O
u
t
[
4
]
=
,
,
,
,
,
,
Specify symmetry of edges:
I
n
[
1
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
2
,
2
}
}
,
"
E
d
g
e
S
y
m
m
e
t
r
y
"
"
O
r
d
e
r
e
d
"
]
O
u
t
[
1
]
=
,
,
,
I
n
[
2
]
:
=
E
n
u
m
e
r
a
t
e
H
y
p
e
r
g
r
a
p
h
s
[
{
{
3
,
2
}
}
,
"
E
d
g
e
S
y
m
m
e
t
r
y
"
"
O
r
d
e
r
e
d
"
]
O
u
t
[
2
]
=
,
,
,
,
,
,
,
,
,
,
,