Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NetworkXLink
Guides
Overview
Algorithms
Random Graphs
Symbols
WolframExternalFunctions`NetworkXLink`RandomGraph
AllNodeCuts
ApproximateCurrentFlowBetweennessCentrality
AsynchronousFluidCommunities
AsynchronousLPACommunities
AttractingComponents
BetweennessCentralitySubset
BiadjacencyMatrix
Bipartite$AverageClustering
Bipartite$BetweennessCentrality
Bipartite$ClosenessCentrality
Bipartite$Clustering
Bipartite$ConfigurationModel
Bipartite$DegreeCentrality
Bipartite$Density
CollaborationWeightedProjectedGraph
Color
CommunicabilityBetweennessCentrality
Communicability
CompleteToChordalGraph
CoreNumber
CurrentFlowBetweennessCentrality
CurrentFlowBetweennessCentralitySubset
CurrentFlowClosenessCentrality
DegreeMixingMatrix
DirectedJointDegreeGraph
Dispersion
DualBarabasiAlbertGraph
DuplicationDivergenceGraph
EdgeBetweennessCentralitySubset
EdgeCurrentFlowBetweennessCentrality
EdgeCurrentFlowBetweennessCentralitySubset
EquitableColor
ExpectedDegreeGraph
ExtendedBarabasiAlbertGraph
FindAsteroidalTriple
FindInducedNodes
FromBiadjacencyMatrix
GaussianRandomPartitionGraph
GeneralizedDegree
GeneralRandomIntersectionGraph
GeographicalThresholdGraph
GlobalReachingCentrality
GNCGraph
GNGraph
GnmkRandomGraph
GNRGraph
GreedyColor
GroupBetweennessCentrality
GroupByAnnotation
GroupClosenessCentrality
GroupDegreeCentrality
GroupInDegreeCentrality
GroupOutDegreeCentrality
HarmonicCentrality
IncrementalClosenessCentrality
InterCommunityEdges
IntraCommunityEdges
IsAsteroidalTripleFree
IsAttractingComponent
IsBipartiteNodeSet
IsChordal
IsPartition
IsSemiconnected
JointDegreeGraph
KComponents
KCorona
KCrust
KEdgeAugmentation
KernighanLinBisection
KRandomIntersectionGraph
KShell
KTruss
LabelPropagationCommunities
LFRBenchmarkGraph
LocalReachingCentrality
LukesPartitioning
MakeMaxCliqueGraph
MinimumWeightFullMatching
MinWeightedDominatingSet
MoralGraph
NavigableSmallWorldGraph
NodeRedundancy
OnionLayers
OnionSpectrum
OverlapWeightedProjectedGraph
PartialDuplicationGraph
PartitionQuality
PercolationCentrality
PlantedPartitionGraph
PowerLawClusterGraph
PreferentialAttachmentGraph
ProjectedGraph
ProminentGroup
PythonSeedRandom
PythonSession
RandomClusteredGraph
RandomCograph
RandomInternetASGraph
RandomKOutGraph
RandomLobster
RandomPartitionGraph
RandomPowerLawTree
RandomRegularGraph
RandomShellGraph
RelaxedCavemanGraph
RobinsAlexanderClustering
ScaleFreeGraph
SecondOrderCentrality
Sets
SpectralBipartivity
SpectralGraphForge
SquareClustering
SteinerTree
StochasticBlockModel
SubgraphCentrality
TravelingSalesmanProblem
TreewidthDecomposition
TrophicIncoherenceParameter
TrophicLevels
UniformRandomIntersectionGraph
UsePythonSession
VoteRank
WeightedProjectedGraph
WolframExternalFunctions`NetworkXLink`
K
E
d
g
e
A
u
g
m
e
n
t
a
t
i
o
n
K
E
d
g
e
A
u
g
m
e
n
t
a
t
i
o
n
[
g
,
k
]
f
i
n
d
s
s
e
t
o
f
e
d
g
e
s
t
o
k
-
e
d
g
e
-
c
o
n
n
e
c
t
t
h
e
g
r
a
p
h
g
.
D
e
t
a
i
l
s
Examples
(
7
)
Basic Examples
(
2
)
Construct a 1-edge augmentation of a graph:
I
n
[
1
]
:
=
g
=
V
e
r
t
e
x
A
d
d
[
P
a
t
h
G
r
a
p
h
[
R
a
n
g
e
[
4
]
]
,
5
]
O
u
t
[
1
]
=
I
n
[
2
]
:
=
K
E
d
g
e
A
u
g
m
e
n
t
a
t
i
o
n
[
g
,
1
]
O
u
t
[
2
]
=
{
{
1
,
5
}
}
I
n
[
3
]
:
=
E
d
g
e
A
d
d
[
g
,
U
n
d
i
r
e
c
t
e
d
E
d
g
e
@
@
@
%
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
O
u
t
[
3
]
=
2 and 3-edge augmentations:
I
n
[
1
]
:
=
g
=
;
I
n
[
2
]
:
=
K
E
d
g
e
A
u
g
m
e
n
t
a
t
i
o
n
[
g
,
#
]
&
/
@
{
2
,
3
}
O
u
t
[
2
]
=
{
{
{
5
,
4
}
,
{
1
,
5
}
}
,
{
{
1
,
4
}
,
{
4
,
5
}
,
{
1
,
5
}
,
{
3
,
5
}
,
{
2
,
5
}
}
}
I
n
[
3
]
:
=
E
d
g
e
A
d
d
[
g
,
U
n
d
i
r
e
c
t
e
d
E
d
g
e
@
@
@
#
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
&
/
@
%
O
u
t
[
3
]
=
,
O
p
t
i
o
n
s
(
4
)
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
1
)
S
e
e
A
l
s
o
R
e
l
a
t
e
d
L
i
n
k
s
▪
N
e
t
w
o
r
k
X
"
"