Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Patterns
Guides
Guide
MainGuide
Tech Notes
Match & Replace
Symbols
MatchBindings
MatchParts
MultiwayReplace
NameValuePattern
PatternMatch
Wolfram`Patterns`
M
u
l
t
i
w
a
y
R
e
p
l
a
c
e
M
u
l
t
i
w
a
y
R
e
p
l
a
c
e
[
r
u
l
e
s
,
i
n
i
t
s
]
r
e
t
u
r
n
a
l
a
z
y
t
r
e
e
p
r
o
d
u
c
e
d
b
y
a
p
p
l
y
i
n
g
r
u
l
e
s
t
o
a
l
i
s
t
o
f
i
n
i
t
i
a
l
c
o
n
d
i
t
i
o
n
s
i
n
i
t
s
a
t
a
l
l
p
o
s
s
i
b
l
e
p
o
s
i
t
i
o
n
s
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
M
u
l
t
i
w
a
y
R
e
p
l
a
c
e
[
{
s
[
x
_
]
[
y
_
]
[
z
_
]
x
[
z
]
[
y
[
z
]
]
,
k
[
x
_
]
[
y
_
]
x
}
,
s
[
k
[
s
]
[
i
]
]
[
x
]
[
y
]
]
O
u
t
[
1
]
=
L
a
z
y
L
i
s
t
{
s
[
k
[
s
]
[
i
]
]
[
x
]
[
y
]
…
,
…
}
I
n
[
2
]
:
=
M
u
l
t
i
w
a
y
R
e
p
l
a
c
e
[
{
s
[
x
_
]
[
y
_
]
[
z
_
]
x
[
z
]
[
y
[
z
]
]
,
k
[
x
_
]
[
y
_
]
x
}
,
s
[
k
[
s
]
[
i
]
]
[
x
]
[
y
]
]
/
/
N
o
r
m
a
l
L
a
z
y
O
u
t
[
2
]
=
I
n
[
3
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
C
o
m
b
i
n
a
t
o
r
"
]
[
{
y
[
f
_
]
f
[
y
[
f
]
]
,
y
[
f
_
]
[
x
_
]
f
[
y
[
f
]
]
[
x
]
}
,
y
[
f
]
[
y
[
x
]
]
,
4
,
"
S
t
a
t
e
s
G
r
a
p
h
"
]
/
/
V
e
r
t
e
x
L
i
s
t
O
u
t
[
3
]
=
{
y
[
f
]
[
y
[
x
]
]
,
f
[
y
[
f
]
]
[
y
[
x
]
]
,
y
[
f
]
[
x
[
y
[
x
]
]
]
,
f
[
f
[
y
[
f
]
]
]
[
y
[
x
]
]
,
f
[
y
[
f
]
]
[
x
[
y
[
x
]
]
]
,
y
[
f
]
[
x
[
x
[
y
[
x
]
]
]
]
,
f
[
f
[
f
[
y
[
f
]
]
]
]
[
y
[
x
]
]
,
f
[
f
[
y
[
f
]
]
]
[
x
[
y
[
x
]
]
]
,
f
[
y
[
f
]
]
[
x
[
x
[
y
[
x
]
]
]
]
,
y
[
f
]
[
x
[
x
[
x
[
y
[
x
]
]
]
]
]
,
f
[
f
[
f
[
f
[
y
[
f
]
]
]
]
]
[
y
[
x
]
]
,
f
[
f
[
f
[
y
[
f
]
]
]
]
[
x
[
y
[
x
]
]
]
,
f
[
f
[
y
[
f
]
]
]
[
x
[
x
[
y
[
x
]
]
]
]
,
f
[
y
[
f
]
]
[
x
[
x
[
x
[
y
[
x
]
]
]
]
]
,
y
[
f
]
[
x
[
x
[
x
[
x
[
y
[
x
]
]
]
]
]
]
}
I
n
[
4
]
:
=
L
a
z
y
F
i
n
d
P
a
t
h
M
u
l
t
i
w
a
y
R
e
p
l
a
c
e
[
{
y
[
f
_
]
f
[
y
[
f
]
]
,
y
[
f
_
]
[
x
_
]
f
[
y
[
f
]
]
[
x
]
}
,
y
[
f
]
[
y
[
x
]
]
]
,
L
a
b
e
l
e
d
[
f
[
y
[
f
]
]
[
x
[
x
[
x
[
y
[
x
]
]
]
]
]
,
_
]
O
u
t
[
4
]
=
L
a
z
y
C
o
m
p
u
t
a
t
i
o
n
…
M
e
t
h
o
d
:
F
i
n
d
P
a
t
h
P
a
t
t
e
r
n
:
f
[
y
[
f
]
]
[
x
[
x
[
x
[
y
[
x
]
]
]
]
]
_
P
a
t
h
s
:
{
{
1
,
3
,
1
,
2
,
2
}
}
O
p
t
i
o
n
s
:
I
n
[
5
]
:
=
M
u
l
t
i
w
a
y
R
e
p
l
a
c
e
[
{
y
[
f
_
]
f
[
y
[
f
]
]
,
y
[
f
_
]
[
x
_
]
f
[
y
[
f
]
]
[
x
]
}
,
y
[
f
]
[
y
[
x
]
]
]
1
,
3
,
1
,
2
,
2
O
u
t
[
5
]
=
f
[
y
[
f
]
]
[
x
[
x
[
x
[
y
[
x
]
]
]
]
]
{
1
,
1
,
1
}
…
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
M
a
i
n
G
u
i
d
e
"
"