Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Lazy
Guides
Guide
MainGuide
Symbols
LazyDirectoryTree
LazyExpression
LazyLength
LazyList
Lazy
LazySplits
LazyTraverse
LazyTreeEdges
LazyTree
LazyValueArray
LazyValue
MultiwayNest
Wolfram`Lazy`
L
a
z
y
E
x
p
r
e
s
s
i
o
n
L
a
z
y
E
x
p
r
e
s
s
i
o
n
[
e
x
p
r
]
r
e
p
r
e
s
e
n
t
s
a
n
a
r
b
i
t
r
a
r
y
m
u
t
a
b
l
e
l
a
z
y
e
x
p
r
e
s
s
i
o
n
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
C
l
e
a
r
L
a
z
y
C
a
c
h
e
[
]
Mutable reference dependency:
I
n
[
2
]
:
=
x
=
L
a
z
y
E
x
p
r
e
s
s
i
o
n
[
1
+
2
]
y
=
3
+
x
z
=
4
+
y
O
u
t
[
2
]
=
O
u
t
[
2
]
=
O
u
t
[
2
]
=
Self-reference:
I
n
[
3
]
:
=
o
n
e
s
=
L
a
z
y
E
x
p
r
e
s
s
i
o
n
[
{
1
,
S
p
l
i
c
e
[
o
n
e
s
]
}
]
O
u
t
[
3
]
=
I
n
[
4
]
:
=
L
a
z
y
[
T
a
k
e
]
[
o
n
e
s
,
4
]
O
u
t
[
4
]
=
Built-in methods:
I
n
[
5
]
:
=
r
a
n
g
e
=
L
a
z
y
[
R
a
n
g
e
]
[
]
O
u
t
[
5
]
=
I
n
[
6
]
:
=
r
a
n
g
e
O
u
t
[
6
]
=
I
n
[
7
]
:
=
L
a
z
y
[
S
e
l
e
c
t
]
[
2
^
r
a
n
g
e
-
1
,
P
r
i
m
e
Q
]
O
u
t
[
7
]
=
I
n
[
8
]
:
=
L
a
z
y
[
T
a
b
l
e
]
[
i
^
2
,
i
]
O
u
t
[
8
]
=
Contents cannot be rendered at this time; please try again later
Obligatory Fibonacci examples:
I
n
[
9
]
:
=
f
i
b
=
L
a
z
y
E
x
p
r
e
s
s
i
o
n
0
,
1
,
S
p
l
i
c
e
L
a
z
y
[
M
a
p
T
h
r
e
a
d
]
P
l
u
s
,
f
i
b
,
L
a
z
y
[
R
e
s
t
]
[
f
i
b
]
O
u
t
[
9
]
=
Contents cannot be rendered at this time; please try again later
I
n
[
1
0
]
:
=
n
e
x
t
[
{
1
,
2
}
]
O
u
t
[
1
0
]
=
I
n
[
1
1
]
:
=
f
i
b
=
L
a
z
y
E
x
p
r
e
s
s
i
o
n
@
L
a
z
y
[
F
o
l
d
L
i
s
t
]
[
P
l
u
s
,
0
,
{
1
,
S
p
l
i
c
e
[
f
i
b
]
}
]
O
u
t
[
1
1
]
=
I
n
[
1
2
]
:
=
L
a
z
y
E
x
p
r
e
s
s
i
o
n
F
i
r
s
t
/
@
L
a
z
y
[
N
e
s
t
L
i
s
t
]
[
R
e
p
l
a
c
e
[
{
a
_
,
b
_
}
{
b
,
a
+
b
}
]
,
{
0
,
1
}
]
O
u
t
[
1
2
]
=
I
n
[
1
3
]
:
=
f
i
b
=
L
a
z
y
E
x
p
r
e
s
s
i
o
n
0
,
1
,
S
p
l
i
c
e
@
L
a
z
y
[
T
a
b
l
e
,
f
i
b
〚
n
-
2
〛
+
f
i
b
〚
n
-
1
〛
,
{
n
,
3
,
I
n
f
i
n
i
t
y
}
]
O
u
t
[
1
3
]
=
Contents cannot be rendered at this time; please try again later
I
n
[
1
4
]
:
=
C
l
e
a
r
A
l
l
[
f
i
b
]
f
i
b
[
1
]
=
1
;
f
i
b
[
2
]
=
1
;
f
i
b
[
n
_
I
n
t
e
g
e
r
]
:
=
f
i
b
[
n
]
=
L
a
z
y
E
x
p
r
e
s
s
i
o
n
[
f
i
b
[
n
-
2
]
+
f
i
b
[
n
-
1
]
]
I
n
[
1
5
]
:
=
f
i
b
s
=
T
a
b
l
e
[
f
i
b
[
n
]
,
{
n
,
1
0
}
]
O
u
t
[
1
5
]
=
Contents cannot be rendered at this time; please try again later
I
n
[
1
6
]
:
=
S
c
a
n
[
P
r
i
n
t
[
H
o
l
d
F
o
r
m
[
E
v
a
l
u
a
t
e
[
f
i
b
[
#
]
]
]
]
&
,
R
a
n
g
e
[
1
0
]
]
I
n
[
1
7
]
:
=
f
[
x
_
?
N
u
m
e
r
i
c
Q
]
:
=
1
F
l
o
o
r
[
x
]
+
1
-
F
r
a
c
t
i
o
n
a
l
P
a
r
t
[
x
]
p
o
s
i
t
i
v
e
R
a
t
i
o
n
a
l
s
=
L
a
z
y
[
N
e
s
t
L
i
s
t
]
[
f
,
0
]
r
a
t
i
o
n
a
l
s
=
L
a
z
y
E
x
p
r
e
s
s
i
o
n
@
L
a
z
y
[
M
a
p
T
h
r
e
a
d
]
S
p
l
i
c
e
@
*
L
i
s
t
,
p
o
s
i
t
i
v
e
R
a
t
i
o
n
a
l
s
,
L
a
z
y
[
M
a
p
]
[
M
i
n
u
s
]
@
L
a
z
y
[
R
e
s
t
]
@
p
o
s
i
t
i
v
e
R
a
t
i
o
n
a
l
s
O
u
t
[
1
7
]
=
O
u
t
[
1
7
]
=
Contents cannot be rendered at this time; please try again later