Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LLMFunctions

Guides

  • LLM Functionality

Symbols

  • ChatEvaluate
  • ChatObject
  • GenerateLLMToolResponse
  • ImageSynthesize
  • LLMConfiguration
  • LLMEvaluator
  • LLMExampleFunction
  • LLMFunction
  • LLMPrompt
  • LLMResourceFunction
  • LLMSynthesize
  • LLMTool
  • LLMToolRequest
  • LLMToolResponse
  • $LLMEvaluator
[
EXPERIMENTAL
]
LLM Functionality
Functionality built on top of large language models (LLMs) can be incredibly useful in a multitude of applications. These advanced models have been trained on vast amounts of data, enabling them to generate human-like text that can answer questions, write essays, summarize texts, and even create poetry. They can also simulate conversation, making them useful for tasks like customer service or tutoring. Additionally, they can be used to generate creative content, like stories or marketing copy, and can even help in technical fields by generating code or analyzing data.
The Wolfram Language is an exceptional medium for leveraging the capabilities of large language models. Its high-level, function-based design simplifies interaction with these AI models, making them accessible to a wide range of users. The language's extensive computational intelligence, combined with a rich set of data analysis and visualization tools, allows users to generate, manipulate, and comprehend the output from these models within a broader, data-driven context.
Content Generation
LLMSynthesize
— generate text following instructions
ImageSynthesize
— generate an image from a textual prompt
Symbolic Conversation
ChatObject
— create and represents an ongoing conversation
ChatEvaluate
— add chat interactions and continue a conversation
Function Building
LLMFunction
— represents a template for an large language model prompt
LLMExampleFunction
 ▪
LLMResourceFunction
Symbolic Prompting
https://resources.wolframcloud.com/PromptRepository/ – prompt repository home page
LLMPrompt
— symbolic representation of a prompt
LLMResourceFunction
— retrieves an function from the prompt repository
Tools Interaction
LLMTool
— represents a tool for use by an LLM
LLMToolRequest
 ▪
LLMToolResponse
 ▪
GenerateLLMToolResponse
LLM Options
LLMConfiguration
— represents a configuration for an LLM
LLMEvaluator
 ▪
$LLMEvaluator
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com