Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Trigonometry
Guides
Trigonometry
Tech Notes
Trig Functions and Naming Conventions
Symbols
Chord
Cohavercosine
Cohaversine
Covercosine
Coversine
Excosecant
Exsecant
Hacovercosine
Hacoversine
Havercosine
HyperbolicChord
HyperbolicCohavercosine
HyperbolicCohaversine
HyperbolicCovercosine
HyperbolicCoversine
HyperbolicExcosecant
HyperbolicExsecant
HyperbolicHacovercosine
HyperbolicHacoversine
HyperbolicHavercosine
HyperbolicHaversine
HyperbolicVercosine
HyperbolicVersine
InverseChord
InverseCohavercosine
InverseCohaversine
InverseCovercosine
InverseCoversine
InverseExcosecant
InverseExsecant
InverseHacovercosine
InverseHacoversine
InverseHavercosine
InverseHyperbolicChord
InverseHyperbolicCohavercosine
InverseHyperbolicCohaversine
InverseHyperbolicCovercosine
InverseHyperbolicCoversine
InverseHyperbolicExcosecant
InverseHyperbolicExsecant
InverseHyperbolicHacovercosine
InverseHyperbolicHacoversine
InverseHyperbolicHavercosine
InverseHyperbolicHaversine
InverseHyperbolicVercosine
InverseHyperbolicVersine
InverseVercosine
InverseVersine
Vercosine
Versine
TheRealCStover`Trigonometry`
I
n
v
e
r
s
e
H
y
p
e
r
b
o
l
i
c
C
o
h
a
v
e
r
c
o
s
i
n
e
I
n
v
e
r
s
e
H
y
p
e
r
b
o
l
i
c
C
o
h
a
v
e
r
c
o
s
i
n
e
[
]
X
X
X
X
Examples
(
0
)
I
n
[
1
]
:
=
N
e
e
d
s
[
"
T
h
e
R
e
a
l
C
S
t
o
v
e
r
`
T
r
i
g
o
n
o
m
e
t
r
y
`
"
]
"
"