Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

ConsistentForceField

Guides

  • ConsistentForceField

Tech Notes

  • Extending Coverage of the CFF

Symbols

  • CFFAngle
  • CFFAtomCoordinates
  • CFFDihedral
  • CFFDistance
  • CFFEnergyComponents
  • CFFEnergy
  • CFFEnergyReport
  • CFFGradient
  • CFFHessian
  • CFFNormalModes
  • CFFOptimizeGeometry
  • CFFParameterize
  • CFFThermodynamicFunctions
  • CFFThreeFoldTorsion
  • CFFTorsion
  • CFFTwist
  • CFFTwoFoldTorsion
  • NormalModeTable
  • $AllowSymbolicCFFEnergy
  • $CFFAuxiliaryPatternsParameters
  • $CFFPublishedPatternsParameters
  • $ConsistentForceFieldVersion
RobertNachbar`ConsistentForceField`
$AllowSymbolicCFFEnergy
​
$AllowSymbolicCFFEnergy
controls whether the Wolfram System is allowed to compute symbolic CFF energies, gradient vectors,
Hessian
matrices, and normal modes.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Parameterize the molecule symbolically:
In[1]:=
mol=Molecule["C=C"];​​Block
$AllowSymbolicCFFEnergy
=True,​​
CFFParameterize
[mol,"PrimaryParameters"{}]​​
Out[1]=
Atoms{C,C,H,H,H,H},Stretch{{1,2},

D
,

0,D
},{1,3},

l
,

0,l
,{1,4},

l
,

0,l
,{2,5},

l
,

0,l
,{2,6},

l
,

0,l
,Bend{2,1,3},
ℋ
ϕ
,
ϕ
0
,{2,1,4},
ℋ
ϕ
,
ϕ
0
,{{3,1,4},
ℋ
η
,
η
0
},{1,2,5},
ℋ
ϕ
,
ϕ
0
,{1,2,6},
ℋ
ϕ
,
ϕ
0
,{{5,2,6},
ℋ
η
,
η
0
},Torsion{},Twist{{3,4},1,2,{6,5}},
ℋ
ϕ,E
,OutOfPlane{{{1,2,3,4},
ℋ
χ
},{{2,1,5,6},
ℋ
χ
}},Nonbond{3,5},
ϵ
H,H
,
*

H,H
,{3,6},
ϵ
H,H
,
*

H,H
,{4,5},
ϵ
H,H
,
*

H,H
,{4,6},
ϵ
H,H
,
*

H,H
,StretchStretch{2,1,3},
ℱ
D,l
,

0,D
,

0,l
,{2,1,4},
ℱ
D,l
,

0,D
,

0,l
,{3,1,4},
ℱ
l,l
,

0,l
,

0,l
,{1,2,5},
ℱ
D,l
,

0,D
,

0,l
,{1,2,6},
ℱ
D,l
,

0,D
,

0,l
,{5,2,6},
ℱ
l,l
,

0,l
,

0,l
,StretchBend{1,2,5},
ℱ
D,ϕ
,

0,D
,
ϕ
0
,{1,2,6},
ℱ
D,ϕ
,

0,D
,
ϕ
0
,{2,1,3},
ℱ
D,ϕ
,

0,D
,
ϕ
0
,{2,1,4},
ℱ
D,ϕ
,

0,D
,
ϕ
0
,{3,1,2},
ℱ
l,ϕ
,

0,l
,
ϕ
0
,{3,1,4},
ℱ
l,η
,

0,l
,
η
0
,{4,1,2},
ℱ
l,ϕ
,

0,l
,
ϕ
0
,{4,1,3},
ℱ
l,η
,

0,l
,
η
0
,{5,2,1},
ℱ
l,ϕ
,

0,l
,
ϕ
0
,{5,2,6},
ℱ
l,η
,

0,l
,
η
0
,{6,2,1},
ℱ
l,ϕ
,

0,l
,
ϕ
0
,{6,2,5},
ℱ
l,η
,

0,l
,
η
0
,BendBend{1,2,5,6},
ℱ
ϕ,ϕ
,
ϕ
0
,
ϕ
0
,{2,1,3,4},
ℱ
ϕ,ϕ
,
ϕ
0
,
ϕ
0
,{3,1,2,4},
†
ℱ
ϕ,η
,
ϕ
0
,
η
0
,{4,1,2,3},
†
ℱ
ϕ,η
,
ϕ
0
,
η
0
,{5,2,1,6},
†
ℱ
ϕ,η
,
ϕ
0
,
η
0
,{6,2,1,5},
†
ℱ
ϕ,η
,
ϕ
0
,
η
0
,BendBendTwist{3,1,2,6},

ϕ,ϕ
,
ϕ
0
,
ϕ
0
,{3,1,2,5},

ϕ,ϕ
,
ϕ
0
,
ϕ
0
,{4,1,2,6},

ϕ,ϕ
,
ϕ
0
,
ϕ
0
,{4,1,2,5},

ϕ,ϕ
,
ϕ
0
,
ϕ
0
,OopOop{{{{3,4},1,2,{6,5}},
ℱ
χ,χ
}},Constraint{}
Compute the symbolic energy:
In[2]:=
Block
$AllowSymbolicCFFEnergy
=True,​​symbolicEnergy=
CFFEnergy
[mol,"PrimaryParameters"{}]​​
Out[2]=
1
2
ℋ
η
2
(2.05773-
η
0
)
+
1
2
ℋ
η
2
(2.05773-
η
0
)
+
1
2
ℋ
ϕ
2
(2.11273-
ϕ
0
)
+
1
2
ℋ
ϕ
2
(2.11273-
ϕ
0
)
+
1
2
ℋ
ϕ
2
(2.11273-
ϕ
0
)
+
1
2
ℋ
ϕ
2
(2.11273-
ϕ
0
)
+
1
2

D
2
(1.33579-

0,D
)
+
1
2

l
2
1.08549-

0,l

+
1
2

l
2
1.08549-

0,l

+
1
2

l
2
1.08549-

0,l

+
1
2

l
2
1.08549-

0,l

-1.(2.11273-
ϕ
0
)(2.11273-
ϕ
0
)

ϕ,ϕ
+1.(2.11273-
ϕ
0
)(2.11273-
ϕ
0
)

ϕ,ϕ
+1.(2.11273-
ϕ
0
)(2.11273-
ϕ
0
)

ϕ,ϕ
-1.(2.11273-
ϕ
0
)(2.11273-
ϕ
0
)

ϕ,ϕ
+(1.33579-

0,D
)1.08549-

0,l

ℱ
D,l
+(1.33579-

0,D
)1.08549-

0,l

ℱ
D,l
+(1.33579-

0,D
)1.08549-

0,l

ℱ
D,l
+(1.33579-

0,D
)1.08549-

0,l

ℱ
D,l
+(2.11273-
ϕ
0
)(1.33579-

0,D
)
ℱ
D,ϕ
+(2.11273-
ϕ
0
)(1.33579-

0,D
)
ℱ
D,ϕ
+(2.11273-
ϕ
0
)(1.33579-

0,D
)
ℱ
D,ϕ
+(2.11273-
ϕ
0
)(1.33579-

0,D
)
ℱ
D,ϕ
+1.08549-

0,l
1.08549-

0,l

ℱ
l,l
+1.08549-

0,l
1.08549-

0,l

ℱ
l,l
+(2.05773-
η
0
)1.08549-

0,l

ℱ
l,η
+(2.05773-
η
0
)1.08549-

0,l

ℱ
l,η
+(2.05773-
η
0
)1.08549-

0,l

ℱ
l,η
+(2.05773-
η
0
)1.08549-

0,l

ℱ
l,η
+(2.11273-
ϕ
0
)1.08549-

0,l

ℱ
l,ϕ
+(2.11273-
ϕ
0
)1.08549-

0,l

ℱ
l,ϕ
+(2.11273-
ϕ
0
)1.08549-

0,l

ℱ
l,ϕ
+(2.11273-
ϕ
0
)1.08549-

0,l

ℱ
l,ϕ
+(2.11273-
ϕ
0
)(2.11273-
ϕ
0
)
ℱ
ϕ,ϕ
+(2.11273-
ϕ
0
)(2.11273-
ϕ
0
)
ℱ
ϕ,ϕ
+(2.05773-
η
0
)(2.11273-
ϕ
0
)
†
ℱ
ϕ,η
+(2.05773-
η
0
)(2.11273-
ϕ
0
)
†
ℱ
ϕ,η
+(2.05773-
η
0
)(2.11273-
ϕ
0
)
†
ℱ
ϕ,η
+(2.05773-
η
0
)(2.11273-
ϕ
0
)
†
ℱ
ϕ,η
+
ϵ
H,H
-0.00351118
6
(
*

)
H,H
+0.0000800806
9
(
*

)
H,H
+
ϵ
H,H
-0.00351118
6
(
*

)
H,H
+0.0000800806
9
(
*

)
H,H
+
ϵ
H,H
-0.0136842
6
(
*

)
H,H
+0.000616136
9
(
*

)
H,H
+
ϵ
H,H
-0.0136842
6
(
*

)
H,H
+0.000616136
9
(
*

)
H,H

Convert the CFF parameters to raw form:
In[3]:=
rawParameters=
$CFFPublishedPatternsParameters
["Parameters"]/.q:Quantity[_,"AngularDegrees"]UnitConvert[q,"Radians"]/.q_QuantityQuantityMagnitude[q];
Apply the raw parameters to the symbolic energy:
In[4]:=
symbolicEnergy//.rawParameters
Out[4]=
0.329258
Compare to the usual result:
In[5]:=
CFFEnergy
[Molecule["C=C"]]
Out[5]=
0.329258
kcal
th
/mol
SeeAlso
CFFEnergy
 
▪
CFFGradient
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com