Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Graphy
Guides
Graphy
Tech Notes
Testing for Points on Border or Interior of a Polygon
Symbols
Arrow3D
ArrowCylinder
ArrowSlab
ConicSurface
EmptyRectangle
HollowCylinder
HollowPillar
InPolygonQ
LineToCable
OnBoundaryQ
Patches
Pillar
Pyramid3D
Spin3D
SpinningTop
StackGraphics
StringToCurves
StringToPolygons
Wiggly
QuantumMob`Graphy`
S
t
r
i
n
g
T
o
P
o
l
y
g
o
n
s
S
t
r
i
n
g
T
o
P
o
l
y
g
o
n
s
[
"
s
t
r
i
n
g
"
]
o
r
S
t
r
i
n
g
T
o
P
o
l
y
g
o
n
s
[
S
t
y
l
e
[
"
s
t
r
i
n
g
"
,
…
]
]
c
o
n
v
e
r
t
s
"
s
t
r
i
n
g
"
t
o
a
s
e
t
o
f
p
o
l
y
g
o
n
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
t
Q
D
=
S
t
r
i
n
g
T
o
P
o
l
y
g
o
n
s
[
"
Q
D
"
]
;
G
r
a
p
h
i
c
s
3
D
[
{
E
d
g
e
F
o
r
m
[
]
,
B
l
u
e
,
t
Q
D
}
,
A
x
e
s
T
r
u
e
]
O
u
t
[
1
]
=
I
n
[
2
]
:
=
t
Q
D
=
S
t
r
i
n
g
T
o
P
o
l
y
g
o
n
s
[
"
Q
D
"
,
"
P
i
v
o
t
"
{
0
.
5
,
0
.
5
}
,
"
A
n
g
l
e
"
{
P
i
/
2
,
0
,
0
}
]
;
G
r
a
p
h
i
c
s
3
D
[
{
E
d
g
e
F
o
r
m
[
]
,
B
l
u
e
,
t
Q
D
}
,
A
x
e
s
T
r
u
e
]
O
u
t
[
2
]
=
I
n
[
3
]
:
=
t
Q
D
=
S
t
r
i
n
g
T
o
P
o
l
y
g
o
n
s
[
"
Q
D
"
,
"
P
i
v
o
t
"
{
1
,
1
}
,
"
A
n
g
l
e
"
{
P
i
/
2
,
P
i
/
2
,
0
}
]
;
G
r
a
p
h
i
c
s
3
D
[
{
E
d
g
e
F
o
r
m
[
]
,
B
l
u
e
,
t
Q
D
}
,
A
x
e
s
T
r
u
e
]
O
u
t
[
3
]
=
I
n
[
4
]
:
=
t
Q
D
=
S
t
r
i
n
g
T
o
P
o
l
y
g
o
n
s
[
S
t
y
l
e
[
"
Q
D
"
,
F
o
n
t
F
a
m
i
l
y
"
H
e
l
v
e
t
i
c
a
"
,
F
o
n
t
W
e
i
g
h
t
"
B
o
l
d
"
]
,
"
P
i
v
o
t
"
{
1
,
1
}
,
"
A
n
g
l
e
"
{
P
i
/
2
,
0
,
0
}
]
;
G
r
a
p
h
i
c
s
3
D
[
{
E
d
g
e
F
o
r
m
[
]
,
B
l
u
e
,
t
Q
D
}
,
A
x
e
s
T
r
u
e
]
O
u
t
[
4
]
=