Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
DrawingTools
Guides
DrawingTools
Tech Notes
Testing for Points on Border or Interior of a Polygon
Symbols
Arrow3D
ArrowCylinder
ArrowSlab
ConicSurface
EmptyRectangle
HollowCylinder
HollowPillar
InPolygonQ
LineToCable
OnBoundaryQ
Patches
Pillar
Pyramid3D
Spin3D
SpinningTop
StackGraphics
StringToCurves
StringToPolygons
Wiggly
QuantumMob`DrawingTools`
L
i
n
e
T
o
C
a
b
l
e
L
i
n
e
T
o
C
a
b
l
e
[
{
p
1
,
p
2
,
…
}
]
m
a
k
e
s
a
f
l
e
x
i
b
l
e
c
a
b
l
e
c
o
n
n
e
c
t
i
n
g
p
o
i
n
t
s
{
p
1
,
p
2
,
…
}
w
i
t
h
t
h
e
s
e
c
t
i
o
n
o
f
a
p
a
r
t
i
c
u
l
a
r
s
h
a
p
e
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
l
i
n
e
=
T
a
b
l
e
[
{
x
,
0
.
2
*
S
i
n
[
x
*
P
i
]
,
0
}
,
{
x
,
0
,
3
,
0
.
0
5
}
]
;
I
n
[
2
]
:
=
G
r
a
p
h
i
c
s
3
D
L
i
n
e
T
o
C
a
b
l
e
[
l
i
n
e
,
"
R
a
d
i
u
s
"
0
.
1
]
O
u
t
[
2
]
=
I
n
[
3
]
:
=
p
o
l
y
=
{
{
0
,
3
,
-
1
}
,
{
0
,
3
,
1
}
,
{
0
,
-
3
,
1
}
,
{
0
,
-
3
,
-
1
}
}
/
5
O
u
t
[
3
]
=
0
,
3
5
,
-
1
5
,
0
,
3
5
,
1
5
,
0
,
-
3
5
,
1
5
,
0
,
-
3
5
,
-
1
5
I
n
[
4
]
:
=
G
r
a
p
h
i
c
s
3
D
[
P
o
l
y
g
o
n
[
p
o
l
y
]
]
O
u
t
[
4
]
=
I
n
[
5
]
:
=
G
r
a
p
h
i
c
s
3
D
E
d
g
e
F
o
r
m
[
]
,
{
R
e
d
,
P
o
l
y
g
o
n
[
p
o
l
y
]
}
,
L
i
n
e
T
o
C
a
b
l
e
[
l
i
n
e
,
"
S
h
a
p
e
"
p
o
l
y
]
O
u
t
[
5
]
=
I
n
[
6
]
:
=
r
f
3
=
M
o
d
u
l
e
{
R
=
1
0
,
L
=
2
6
,
W
=
1
6
,
t
h
i
c
k
=
3
,
d
a
t
,
d
=
0
.
5
,
t
}
,
d
a
t
[
1
]
=
{
{
d
,
W
,
0
.
5
t
h
i
c
k
}
,
{
(
L
-
R
)
*
0
.
9
5
,
W
,
0
.
5
t
h
i
c
k
}
,
{
L
-
R
,
W
,
0
.
5
t
h
i
c
k
}
}
;
d
a
t
[
2
]
=
T
a
b
l
e
[
{
L
-
R
,
W
-
R
,
0
.
5
t
h
i
c
k
}
+
{
R
*
S
i
n
[
t
]
,
R
*
C
o
s
[
t
]
,
0
}
,
{
t
,
0
,
P
i
/
2
,
P
i
/
1
0
0
}
]
;
d
a
t
[
3
]
=
{
{
L
,
(
W
-
R
)
*
1
.
0
5
,
0
.
5
t
h
i
c
k
}
}
;
d
a
t
[
1
]
=
J
o
i
n
[
d
a
t
[
1
]
,
d
a
t
[
2
]
,
d
a
t
[
3
]
]
;
d
a
t
[
2
]
=
M
a
p
[
{
1
,
-
1
,
1
}
*
#
&
,
d
a
t
[
1
]
]
;
d
a
t
[
2
]
=
R
e
v
e
r
s
e
[
d
a
t
[
2
]
]
;
d
a
t
[
1
]
=
J
o
i
n
[
d
a
t
[
1
]
,
d
a
t
[
2
]
]
;
d
a
t
[
2
]
=
M
a
p
[
{
-
1
,
1
,
1
}
*
#
&
,
d
a
t
[
1
]
]
;
d
a
t
[
2
]
=
R
e
v
e
r
s
e
[
d
a
t
[
2
]
]
;
d
a
t
[
1
]
=
J
o
i
n
[
d
a
t
[
1
]
,
d
a
t
[
2
]
]
;
d
a
t
[
1
]
=
M
a
p
[
{
1
1
,
0
,
0
}
+
#
&
,
d
a
t
[
1
]
]
;
d
a
t
[
2
]
=
{
{
0
.
5
t
h
i
c
k
,
3
,
0
}
,
{
-
0
.
5
t
h
i
c
k
,
3
,
0
}
,
{
-
0
.
5
t
h
i
c
k
,
-
3
,
0
}
,
{
0
.
5
t
h
i
c
k
,
-
3
,
0
}
}
;
L
i
n
e
T
o
C
a
b
l
e
[
d
a
t
[
1
]
,
"
S
h
a
p
e
"
d
a
t
[
2
]
]
;
I
n
[
7
]
:
=
G
r
a
p
h
i
c
s
3
D
[
{
E
d
g
e
F
o
r
m
[
]
,
r
f
3
}
]
O
u
t
[
7
]
=
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
D
r
a
w
i
n
g
T
o
o
l
s
P
a
c
k
a
g
e
"
"