Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LittleChildPaclet
Guides
Assumptions and Domains
Linguistic Data
Number Digits
Prime Numbers
Start Here Wolfram Challenge Functions
String Patterns
Wolfram Challenges Algorithms
Wolfram Challenges Computational Knowledge
Wolfram Challenges Geography
Wolfram Challenges Mathematics
Wolfram Challenges Words and Linguistics
Working with Sequences
Symbols
AliquotSequence
AlmostPalindrome
Anagrams
AntipodalCity
AntipodeAboveSeaLevelQ
BabbageSquares
BalancedParentheses
BalancedTernary
ButterflyString
CaesarDecrypt
CatalanUnrank
Coins
CompleteDictionary
DigitalRoot
FizzBuzz
IntegerPalindromeQ
MaxRomanLength
MaxRomanNumeralValue
NonNegativeIntegerQ
NumberTriangle
OddBeforeEven
PairsAddToHundred
PositiveIntegerQ
RepeatandEndingPrimes
SameStartEndWords
SayHello
SquareSum
StringPatternQ
ThreeFive
ToMorseCode
TwoAndThreePointers
WordListLookup
Wolfram Challenges Algorithms
I am moving onto Wolfram Challenges Algorithms next after Start Here.
Challenges in the Algorithms Track
D
i
g
i
t
a
l
R
o
o
t
— takes in a non-negative number and returns its digital root
C
o
i
n
s
— finds the fewest number of coins needed to add up to a certain value.
Algorithms Tagged Challenges not in the Algorithms Track
A
l
i
q
u
o
t
S
e
q
u
e
n
c
e
— finds the aliquot sequence starting with a given positive integer
B
a
l
a
n
c
e
d
P
a
r
e
n
t
h
e
s
e
s
— generates all possible matched sequences of opened and closed parentheses of n pairs.
Helper Functions for Wolfram Challenge functions
C
a
t
a
l
a
n
U
n
r
a
n
k
— Find the totally balanced binary sequence for a given rank. This forms the basis for BalancedParentheses.
F
r
a
m
e
B
o
x
[
"
\
"
X
X
X
X
\
"
"
]
O
p
e
n