Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
BooleanLogic
Tutorials
BooleanBasics
Guides
Logic
Tech Notes
Boolean Basics
Symbols
AllBooleanFormsLiteralCounts
AllBooleanForms
AllMinimalBooleanFormsLiteralCounts
AllMinimalBooleanForms
BooleanCompose
BooleanStructureData
BooleanTruthInputData
FindBooleanAlternative
InverseBoole
RandomBooleanFunction
TruthTable
VennDiagram
Logic
The paclet has functions that are useful for studying logic.
B
o
o
l
e
a
n
S
t
r
u
c
t
u
r
e
D
a
t
a
— information on the structure of a boolean function
B
o
o
l
e
a
n
T
r
u
t
h
I
n
p
u
t
D
a
t
a
— information on how a boolean function's outputs depend on its inputs
F
i
n
d
B
o
o
l
e
a
n
A
l
t
e
r
n
a
t
i
v
e
— find an alternative form of a boolean function with a specific set of operations
V
e
n
n
D
i
a
g
r
a
m
— draw a Venn diagram for visualization
T
r
u
t
h
T
a
b
l
e
— generate a truth table
B
o
o
l
e
a
n
C
o
m
p
o
s
e
— functionally compose a Boolean expression
I
n
v
e
r
s
e
B
o
o
l
e
— inverse function of Boole to convert 1 to True and 0 to False
A
l
l
B
o
o
l
e
a
n
F
o
r
m
s
— compute all forms of a boolean function
A
l
l
M
i
n
i
m
a
l
B
o
o
l
e
a
n
F
o
r
m
s
— compute all minimal forms of a boolean function
A
l
l
B
o
o
l
e
a
n
F
o
r
m
s
L
i
t
e
r
a
l
C
o
u
n
t
s
— count the number of literals in every form for a boolean function
A
l
l
M
i
n
i
m
a
l
B
o
o
l
e
a
n
F
o
r
m
s
L
i
t
e
r
a
l
C
o
u
n
t
s
— count the number of literals in every minimal form for a boolean function
R
a
n
d
o
m
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
— generate a random boolean function
Future Research Ideas
I hope to implement these functions eventually. I don't know how to implement them currently.
A
f
f
i
n
e
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
Q
— checks if the input is an affine boolean function
B
e
n
t
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
Q
— checks if the input is a bent boolean function
C
a
n
a
l
i
z
i
n
g
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
Q
— checks if the input is a canalizing boolean function
H
o
r
n
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
Q
— checks if the input is functionally equivalent to a Horn boolean function
D
e
f
i
n
i
t
e
H
o
r
n
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
Q
— checks if the input is functionally equivalent to a definite Horn boolean function
K
r
o
m
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
Q
— checks if the input is functionally equivalent to a Krom boolean function
S
y
m
m
e
t
r
i
c
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
Q
— checks if the input is a symmetric boolean function
T
h
r
e
s
h
o
l
d
B
o
o
l
e
a
n
F
u
n
c
t
i
o
n
Q
— checks if the input is a threshold boolean function
K
a
r
n
a
u
g
h
M
a
p
— reduce a boolean expression with a Karnaugh map algorithm
P
r
i
m
e
I
m
p
l
i
c
a
n
t
L
i
s
t
— outputs the prime implicants of a boolean expression
D
i
s
j
u
n
c
t
i
v
e
P
r
i
m
e
F
o
r
m
— find the disjunctive prime form
T
e
c
h
N
o
t
e
s
▪
B
o
o
l
e
a
n
B
a
s
i
c
s
"
"