Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CAGenetics

Guides

  • Main Guide

Symbols

  • AncestorGraphEvolution
  • AncestorGraph
  • AncestorsEvolution
  • CACanonicalTree
  • CAEquationTree
  • CAEvolutionTree
  • CAGeneticTree
  • CAMonotoneQTree
  • CanonicalGenes
  • CanonicalRule
  • CANormalTree
  • CAPlot
  • CASymmetryIndexTree
  • CoeffToOutput
  • ComputeEntropy
  • ComputeWolframClass
  • DeNormalizePosition
  • DigitOrder
  • EquivalentClass
  • ExtendGene
  • FindMinimumRange
  • FromGenes
  • FromNormalSpace
  • FullAsymmetricRuleQ
  • GeneCompress
  • GeneEquation
  • GeneExpand
  • GeneFromNormalSpace
  • GenePrepend
  • GeneRule
  • GeneSet
  • GeneSets
  • GeneSplice
  • GeneThread
  • GeneToNormalSpace
  • GeneToPrimal
  • GeneVariables
  • GetWolframClass
  • IdentityRule
  • InverseRule
  • MAERule
  • MakeGeneSymmetric
  • ModulusKDCoeff
  • ModulusKDFunction
  • ModulusPCoeff
  • ModulusPCore
  • ModulusPFunctionFromCoeff
  • ModulusPFunction
  • ModulusPMatrix
  • MonotoneQ
  • NegateRule
  • NormalizePosition
  • NormalSignatureDiagonal
  • NormalSpaceCenter
  • NormalSpaceDotToReferenceVector
  • NormalSpaceProjectionToMain
  • NormalSpaceReference
  • NormalSpaceReferenceVector
  • NormalSpaceVectorFromPoints
  • NormalSpaceVectorOrthogonalToMain
  • OffsetGeneSet
  • OutputToCoeff
  • PermutationForSymmetry
  • PermutationsForReflection
  • PermutationsFromNormalSpace
  • PermutationsGeneToPrimal
  • PermutationsPrimalToGene
  • PermutationsToNormalSpace
  • PositionToPrimal
  • PrimalToGene
  • PrimalToPosition
  • PrintableEquation
  • ProbRule
  • RandomAsymmetricGene
  • RandomAsymmetricRule
  • RandomGene
  • RandomRule
  • RandomSemiAsymmetricRule
  • RandomSymmetricGene
  • RandomSymmetricRule
  • ReflectDigitOrder
  • ReflectGene
  • ReflectNormalRule
  • ReflectRule
Obando`CAGenetics`
RuleSplice
​
RuleSplice
[ruleFrom,kFrom,rFrom,ruleTo,kTo,rTo]
it splices the
ruleFrom
into the
ruleTo
with the corresponding
kFrom
,
rFrom
,
kTo
and
rTo
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
▪
We splice rule 45 from the ECA into the Identity Rule from rule space where k = 3, r = 1.
In[1]:=
RulePlot[CellularAutomaton[45]]​​RulePlotCellularAutomaton
RuleSplice
[45,2,1,IdentityRule[3,1],3,1],3,1
Out[1]=
Out[1]=
▪
We splice rule 30 from the ECA into the Identity Rule from rule space where k = 3, r = 1.
In[2]:=
ArrayPlot[CellularAutomaton[​​{30,2,1},{{1},0},{50,All}],PlotLabel"Rule 30 in the ECA"]​​ArrayPlotCellularAutomaton​​
RuleSplice
[30,2,1,IdentityRule[3,1],3,1],3,1,{{1},0},{50,All},PlotLabel"Rule 30 in k=3, r=1, ("<>ToString
RuleSplice
[30,2,1,IdentityRule[3,1],3,1]<>")"
Out[2]=
Out[2]=
▪
We splice rule 110 and from the ECA into the Identity Rule from rule space where k = 3, r = 1.
In[3]:=
ArrayPlot[CellularAutomaton[​​{110,2,1},{{1},0},{50,All}],PlotLabel"Rule 110 in the ECA"]​​ArrayPlotCellularAutomaton​​
RuleSplice
[110,2,1,IdentityRule[3,1],3,1],3,1,{{1},0},{50,All},PlotLabel"Rule 110 in k=3, r=1, ("<>ToString
RuleSplice
[110,2,1,IdentityRule[3,1],3,1]<>")"
Out[3]=
Out[3]=
▪
We splice rule 124 from the ECA into the Identity Rule in rule space k=4, r=1, we then find its 2 Modulo-Additive Equivalent rule to which we splice rule 110 from the ECA.
In[4]:=
ArrayPlotCellularAutomaton
RuleSplice
124,2,1,MAERule
RuleSplice
[110,2,1,IdentityRule[4,1],4,1],4,1,2,4,1,4,1,RotateRight[ReplacePart[Join[Table[0,50],Table[2,50]],{11,1003}],1],{100,{-50,50}}​​ArrayPlotCellularAutomaton
RuleSplice
124,2,1,MAERule
RuleSplice
[110,2,1,IdentityRule[4,1],4,1],4,1,2,4,1,4,1,RSeed[4],{100,{-50,50}}
Out[4]=
Out[4]=
""

Powered by the Wolfram Cloud More about Wolfram Technology

© 2022 Wolfram Research, Inc. All rights reserved. Terms of Use Privacy Contact Us