Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LieART

Guides

  • LieART: Lie Algebras and Representation Theory

Tech Notes

  • LieART - Quick Start Tutorial

Symbols

  • Algebra
  • CartanMatrix
  • DecomposeIrrep
  • DecomposeProduct
  • DimName
  • Dim
  • HighestRoot
  • Index
  • Irrep
  • IrrepPlus
  • LaTeXForm
  • MetricTensor
  • OrthogonalSimpleRoots
  • PositiveRoots
  • ProductAlgebra
  • ProductIrrep
  • RootSystem
  • WeightSystem
  • YoungTableau

Other

  • BranchingRules
  • IrrepProperties
  • TensorProducts
LieART`
Dim
​
Dim
[irrep]
computes the numerical dimension of
irrep
.
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
Dimension of the fundamental representation of SU(3):
In[1]:=
Dim[Irrep[A][1,0]]
Out[1]=
3
Dimension of the spinor representation of SO(10), i.e.,
D
5
in Dynkin classification:
In[2]:=
Dim[Irrep[D][0,0,0,0,1]]
Out[2]=
16
The adjoint representation of SU(N) is of dimension
2
N
-1
. Example for SU(5):
In[3]:=
Dim[Irrep[A][1,0,0,1]]
Out[3]=
24
Scope  
(1)

SeeAlso
DimName
 
▪
Index
RelatedGuides
▪
LieART: Lie Algebras and Representation Theory
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com