Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LieART
Guides
LieART: Lie Algebras and Representation Theory
Tech Notes
LieART - Quick Start Tutorial
Symbols
Algebra
CartanMatrix
DecomposeIrrep
DecomposeProduct
DimName
Dim
HighestRoot
Index
Irrep
IrrepPlus
LaTeXForm
MetricTensor
OrthogonalSimpleRoots
PositiveRoots
ProductAlgebra
ProductIrrep
RootSystem
WeightSystem
YoungTableau
Other
BranchingRules
IrrepProperties
TensorProducts
LieART`
D
i
m
D
i
m
[
i
r
r
e
p
]
c
o
m
p
u
t
e
s
t
h
e
n
u
m
e
r
i
c
a
l
d
i
m
e
n
s
i
o
n
o
f
i
r
r
e
p
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
2
)
Basic Examples
(
1
)
Dimension of the fundamental representation of SU(3):
I
n
[
1
]
:
=
D
i
m
[
I
r
r
e
p
[
A
]
[
1
,
0
]
]
O
u
t
[
1
]
=
3
Dimension of the spinor representation of SO(10), i.e.,
D
5
in Dynkin classification:
I
n
[
2
]
:
=
D
i
m
[
I
r
r
e
p
[
D
]
[
0
,
0
,
0
,
0
,
1
]
]
O
u
t
[
2
]
=
1
6
The adjoint representation of SU(N) is of dimension
2
N
-
1
. Example for SU(5):
I
n
[
3
]
:
=
D
i
m
[
I
r
r
e
p
[
A
]
[
1
,
0
,
0
,
1
]
]
O
u
t
[
3
]
=
2
4
S
c
o
p
e
(
1
)
S
e
e
A
l
s
o
D
i
m
N
a
m
e
▪
I
n
d
e
x
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
L
i
e
A
R
T
:
L
i
e
A
l
g
e
b
r
a
s
a
n
d
R
e
p
r
e
s
e
n
t
a
t
i
o
n
T
h
e
o
r
y
"
"