Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
WeakCache
Guides
Weak Cache Functions
Symbols
CheckWeakCache
CleanupAfter
ClearHistory
ClearWeakCache
CreateReference
SameInstanceQ
SetWeakCache
StrongReference
WeakHashTable
WeakReference
JasonB`WeakCache`
S
a
m
e
I
n
s
t
a
n
c
e
Q
S
a
m
e
I
n
s
t
a
n
c
e
Q
[
e
x
p
r
1
,
e
x
p
r
2
]
r
e
t
u
r
n
s
T
r
u
e
i
f
e
x
p
r
1
a
n
d
e
x
p
r
2
s
h
a
r
e
t
h
e
s
a
m
e
i
n
s
t
a
n
c
e
.
S
a
m
e
I
n
s
t
a
n
c
e
Q
[
e
x
p
r
1
,
e
x
p
r
2
,
…
]
r
e
t
u
r
n
s
T
r
u
e
i
f
a
l
l
t
h
e
e
x
p
r
i
a
r
e
t
h
e
s
a
m
e
i
n
s
t
a
n
c
e
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
9
)
Basic Examples
(
2
)
Two expressions that are identical are considered
S
a
m
e
Q
:
I
n
[
1
]
:
=
a
=
"
k
e
y
"
1
;
b
=
"
k
e
y
"
1
;
a
=
=
=
b
O
u
t
[
1
]
=
T
r
u
e
However, they are different instances of the same data:
I
n
[
2
]
:
=
S
a
m
e
I
n
s
t
a
n
c
e
Q
[
a
,
b
]
O
u
t
[
2
]
=
F
a
l
s
e
I
n
[
3
]
:
=
c
=
a
;
S
a
m
e
I
n
s
t
a
n
c
e
Q
[
a
,
c
]
O
u
t
[
3
]
=
T
r
u
e
Two strings entered separately are different instances:
I
n
[
1
]
:
=
S
a
m
e
I
n
s
t
a
n
c
e
Q
[
"
f
o
o
"
,
"
f
o
o
"
]
O
u
t
[
1
]
=
F
a
l
s
e
I
n
[
2
]
:
=
S
a
m
e
I
n
s
t
a
n
c
e
Q
[
f
o
o
=
"
f
o
o
"
,
f
o
o
]
O
u
t
[
2
]
=
T
r
u
e
Two undefined symbols are always the same instance:
I
n
[
3
]
:
=
C
l
e
a
r
A
l
l
[
f
o
o
]
S
a
m
e
I
n
s
t
a
n
c
e
Q
[
u
n
d
e
f
i
n
e
d
,
u
n
d
e
f
i
n
e
d
]
O
u
t
[
3
]
=
T
r
u
e
S
c
o
p
e
(
1
)
P
r
o
p
e
r
t
i
e
s
&
R
e
l
a
t
i
o
n
s
(
5
)
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
1
)
S
e
e
A
l
s
o
S
a
m
e
Q
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
W
e
a
k
C
a
c
h
e
F
u
n
c
t
i
o
n
s
"
"