Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

GeneralizedRange

Guides

  • Guide

Symbols

  • AlgebraicRange
DanieleGregori`GeneralizedRange`
AlgebraicRange
​
AlgebraicRange[x]
gives the range of square roots Sqrt[Range[1, x^2]], for x > 1.
​
​
AlgebraicRange[x,y]
gives the range of square roots Sqrt[Range[x^2, y^2]], for x, y > 0.
​
​
AlgebraicRange[x,y,s]
gives a square root range with steps bounded above by s > 0.
​
​
AlgebraicRange[x,y,s,d]
requires the steps of the square root range to be bounded below by d > 0.
​
​
AlgebraicRange[{r},{x}]
gives the range of algebraic numbers Range[1, x^r]^(1/r), for x > 1.
​
​
AlgebraicRange[{r},{x,y}]
gives the range of algebraic numbers Range[x^r, y^r]^(1/r), for x, y > 0.
​
​
AlgebraicRange[{r},{x,y,s}]
gives an algebraic range with steps bounded above by s > 0.
​
​
AlgebraicRange[{r},{x,y,s},d]
requires the steps of the algebraic range to be bounded below by d > 0.
​
​
AlgebraicRange[{r1,r2,...},{x,y,s},d]
generates the algebraic numbers of root orders r1, r2, ... .
​
​
AlgebraicRange[r,{x,y,s},d]
generates all the algebraic numbers of integer root orders up to r.
​
Details and Options
​
Examples  
(37)
Basic Examples  
(3)
Generate a range of square roots:
In[1]:=
AlgebraicRange
[3]
Out[1]=
1,
2
,
3
,2,
5
,
6
,
7
,2
2
,3
In[2]:=
NumberLinePlot[%]
Out[2]=
​
Generate a square root range with non-unit step:
In[1]:=
AlgebraicRange
[0,3,1/2]
Out[1]=
0,
1
2
,
1
2
,
3
2
,1,
5
2
,
3
2
,
7
2
,
2
,
3
2
,
3
,2,
3
2
,
5
,
6
,
5
2
,
3
3
2
,
7
,2
2
,3
In[2]:=
NumberLinePlot[%]
Out[2]=
​
Generate a range of square and cubic roots:
In[1]:=
AlgebraicRange
[3,{1,2}]
Out[1]=
1,
1/3
2
,
2
,
1/3
3
,
2/3
2
,
1/3
5
,
3
,
1/3
6
,
1/3
7
,2
In[2]:=
NumberLinePlot[%]
Out[2]=
Scope  
(7)

Options  
(17)

Applications  
(2)

Properties & Relations  
(6)

Possible Issues  
(1)

Neat Examples  
(1)

""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com