Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
ExternalFunctions
Guides
Astronomy
Chemistry
External Functions
Mathematics
Text Processing
Symbols
AcentricFactor
Degrees
DiscreteCosineTransform
DiscreteSineTransform
FastFourierTransform
InverseDiscreteCosineTransform
InverseDiscreteSineTransform
InverseFastFourierTransform
KeplerLightCurves
KhatriRaoProduct
KroghInterpolation
LeeKeslerOmega
LoadExternalFunction
MatrixBandwidth
NewtonCotes
Radians
StielPolarFactor
TextWrap
UnicodeLookup
UnicodeName
ArnoudBuzing`ExternalFunctions`
L
e
e
K
e
s
l
e
r
O
m
e
g
a
L
e
e
K
e
s
l
e
r
O
m
e
g
a
[
t
b
,
t
c
,
p
c
]
g
i
v
e
s
L
e
e
-
K
e
s
l
e
r
ω
v
a
l
u
e
f
o
r
a
f
l
u
i
d
g
i
v
e
n
b
o
i
l
i
n
g
t
e
m
p
e
r
a
t
u
r
e
t
b
,
c
r
i
t
i
c
a
l
t
e
m
p
e
r
a
t
u
r
e
t
c
,
a
n
d
c
r
i
t
i
c
a
l
p
r
e
s
s
u
r
e
p
c
.
Examples
(
1
)
Basic Examples
(
1
)
Compute Lee-Kesler
ω
value:
I
n
[
1
]
:
=
L
e
e
K
e
s
l
e
r
O
m
e
g
a
[
4
2
5
.
6
,
6
3
1
.
1
,
3
2
.
1
*
^
5
]
O
u
t
[
1
]
=
0
.
3
2
5
4
4
2
Use
Q
u
a
n
t
i
t
y
:
I
n
[
2
]
:
=
L
e
e
K
e
s
l
e
r
O
m
e
g
a
[
4
2
5
.
6
`
K
,
6
3
1
.
1
`
K
,
3
.
2
1
`
*
^
6
P
a
]
O
u
t
[
2
]
=
0
.
3
2
5
4
4
2
Convert from other units:
I
n
[
3
]
:
=
L
e
e
K
e
s
l
e
r
O
m
e
g
a
[
3
0
6
.
4
1
`
°
F
,
6
7
6
.
3
1
`
°
F
,
3
.
2
1
`
*
^
6
P
a
]
O
u
t
[
3
]
=
0
.
3
2
5
4
4
2
S
e
e
A
l
s
o
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
C
h
e
m
i
s
t
r
y
▪
E
x
t
e
r
n
a
l
F
u
n
c
t
i
o
n
s
R
e
l
a
t
e
d
L
i
n
k
s
▪
C
a
l
e
b
B
e
l
l
,
Y
o
e
l
R
e
n
e
C
o
r
t
e
s
-
P
e
n
a
,
a
n
d
C
o
n
t
r
i
b
u
t
o
r
s
(
2
0
1
6
-
2
0
2
3
)
.
C
h
e
m
i
c
a
l
s
:
C
h
e
m
i
c
a
l
p
r
o
p
e
r
t
i
e
s
c
o
m
p
o
n
e
n
t
o
f
C
h
e
m
i
c
a
l
E
n
g
i
n
e
e
r
i
n
g
D
e
s
i
g
n
L
i
b
r
a
r
y
(
C
h
E
D
L
)
"
"