Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

ExternalFunctions

Guides

  • Astronomy
  • Chemistry
  • External Functions
  • Mathematics

Symbols

  • AcentricFactor
  • DiscreteCosineTransform
  • DiscreteSineTransform
  • FastFourierTransform
  • InverseDiscreteCosineTransform
  • InverseDiscreteSineTransform
  • InverseFastFourierTransform
  • KeplerLightCurve
  • KeplerLightCurves
  • LeeKeslerOmega
  • LoadExternalFunction
  • MatrixBandwidth
  • StielPolarFactor
ArnoudBuzing`ExternalFunctions`
FastFourierTransform
​
FastFourierTransform[list]
computes the fast Fourier transform of
list
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Compute a fast Fourier transform:
In[1]:=
fft=
FastFourierTransform
[{1,2,3}]
Out[1]=
NumericArray
Type: ComplexReal64
Dimensions: {3}

Convert the
NumericArray
to a
List
:
In[2]:=
Normal[fft]
Out[2]=
{6.+0.,-1.5+0.866025,-1.5-0.866025}
Compare to
Fourier
with the given
FourierParameters
:
In[3]:=
Fourier[{1,2,3},FourierParameters{1,1}]
Out[3]=
{6.+0.,-1.5-0.866025,-1.5+0.866025}
SeeAlso
Fourier
RelatedGuides
▪
External Functions
▪
Mathematics
RelatedLinks
▪
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.
Cite this as
Arnoud Buzing (2023), FastFourierTransform, ArnoudBuzing/ExternalFunctions paclet function, https://resources.wolframcloud.com/PacletRepository/resources/ArnoudBuzing/ExternalFunctions/ref/FastFourierTransform.html
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com