Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantileRegression
Guides
Quantile regression
Tech Notes
Quantile regression 3D examples
Quantile regression over weather time series
Symbols
NURBSBasis
QuantileEnvelope
QuantileEnvelopeRegion
QuantileRegressionFit
QuantileRegression
Quantile regression 3D examples
N
o
i
s
y
a
r
r
o
w
w
a
v
e
S
q
u
a
r
e
s
o
m
b
r
e
r
o
P
y
r
a
m
i
d
b
a
s
i
s
P
a
r
t
i
a
l
s
o
m
b
r
e
r
o
In this notebook we develop in detail Quantile Regression (QR) examples over 3D data.
Load the Quantile regression paclet
I
n
[
1
]
:
=
N
e
e
d
s
[
"
A
n
t
o
n
A
n
t
o
n
o
v
`
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
`
"
]
Set random seed
S
e
e
d
R
a
n
d
o
m
[
9
9
0
3
]
Noisy arrow wave
Generate random, "noisy wave" data
I
n
[
9
9
]
:
=
{
b
,
c
}
=
{
-
6
,
6
}
;
d
a
t
a
=
R
a
n
d
o
m
R
e
a
l
[
{
b
,
c
}
,
{
1
2
0
0
,
2
}
]
;
d
a
t
a
=
M
a
p
[
A
p
p
e
n
d
[
#
,
S
q
r
t
[
#
〚
1
〛
-
b
]
+
S
i
n
[
#
〚
1
〛
+
A
b
s
[
#
〚
2
〛
]
]
+
R
a
n
d
o
m
V
a
r
i
a
t
e
[
N
o
r
m
a
l
D
i
s
t
r
i
b
u
t
i
o
n
[
0
,
0
.
3
]
]
]
&
,
d
a
t
a
]
;
D
i
m
e
n
s
i
o
n
s
[
d
a
t
a
]
O
u
t
[
1
0
2
]
=
{
1
2
0
0
,
3
}
3D list plot of the data
I
n
[
1
0
3
]
:
=
L
i
s
t
P
o
i
n
t
P
l
o
t
3
D
[
d
a
t
a
,
P
l
o
t
R
a
n
g
e
A
l
l
,
P
l
o
t
L
a
b
e
l
"
N
o
i
s
y
w
a
v
e
d
a
t
a
"
,
I
m
a
g
e
S
i
z
e
M
e
d
i
u
m
]
O
u
t
[
1
0
3
]
=
Data summary
I
n
[
1
0
4
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
R
e
c
o
r
d
s
S
u
m
m
a
r
y
"
]
[
d
a
t
a
]
O
u
t
[
1
0
4
]
=
1
c
o
l
u
m
n
1
M
i
n
-
5
.
9
9
5
0
2
1
s
t
Q
u
-
2
.
9
8
9
1
1
M
e
a
n
0
.
0
0
0
1
0
1
2
0
4
M
e
d
i
a
n
0
.
0
1
8
6
8
6
3
r
d
Q
u
2
.
9
0
0
9
M
a
x
5
.
9
9
8
4
3
,
2
c
o
l
u
m
n
2
M
i
n
-
5
.
9
8
5
8
6
1
s
t
Q
u
-
2
.
9
3
2
1
3
M
e
a
n
0
.
0
2
2
0
0
7
M
e
d
i
a
n
0
.
1
2
0
0
0
5
3
r
d
Q
u
2
.
8
5
9
6
2
M
a
x
5
.
9
9
0
6
9
,
3
c
o
l
u
m
n
3
M
i
n
-
1
.
1
0
0
5
6
1
s
t
Q
u
1
.
5
8
4
4
4
M
e
a
n
2
.
3
1
9
2
1
M
e
d
i
a
n
2
.
3
7
9
2
1
3
r
d
Q
u
3
.
1
3
4
0
1
M
a
x
5
.
0
2
8
9
3
NURBS basis
I
n
[
1
0
5
]
:
=
b
a
s
i
s
=
N
U
R
B
S
B
a
s
i
s
[
d
a
t
a
〚
A
l
l
,
1
;
;
2
〛
,
{
7
,
4
}
]
;
L
e
n
g
t
h
[
b
a
s
i
s
]
O
u
t
[
1
0
6
]
=
2
8
Quantile regression of probability 0.5
I
n
[
1
0
7
]
:
=
A
b
s
o
l
u
t
e
T
i
m
i
n
g
f
u
n
c
s
=
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
F
i
t
[
d
a
t
a
,
T
h
r
o
u
g
h
[
V
a
l
u
e
s
[
b
a
s
i
s
]
[
x
,
y
]
]
,
{
x
,
y
}
,
0
.
5
]
;
O
u
t
[
1
0
7
]
=
{
0
.
3
8
7
2
,
N
u
l
l
}
Plot the obtained function and data
I
n
[
1
0
8
]
:
=
S
h
o
w
[
L
i
s
t
P
o
i
n
t
P
l
o
t
3
D
[
d
a
t
a
,
P
l
o
t
S
t
y
l
e
R
e
d
,
P
l
o
t
R
a
n
g
e
A
l
l
]
,
P
l
o
t
3
D
[
f
u
n
c
s
,
{
x
,
b
,
c
}
,
{
y
,
b
,
c
}
,
P
l
o
t
R
a
n
g
e
A
l
l
,
P
l
o
t
S
t
y
l
e
{
O
p
a
c
i
t
y
[
0
.
6
]
}
,
P
l
o
t
L
e
g
e
n
d
s
0
.
5
,
M
e
s
h
N
o
n
e
,
P
e
r
f
o
r
m
a
n
c
e
G
o
a
l
"
Q
u
a
l
i
t
y
"
]
,
B
o
x
R
a
t
i
o
s
{
1
,
1
,
1
/
1
.
5
}
,
I
m
a
g
e
S
i
z
e
M
e
d
i
u
m
]
O
u
t
[
1
0
8
]
=
0
.
5
Quantile regression of probabilities 0.1 and 0.9
I
n
[
1
0
9
]
:
=
q
s
=
{
0
.
1
,
0
.
9
}
;
A
b
s
o
l
u
t
e
T
i
m
i
n
g
f
u
n
c
s
=
A
s
s
o
c
i
a
t
i
o
n
T
h
r
e
a
d
q
s
,
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
F
i
t
[
d
a
t
a
,
T
h
r
o
u
g
h
[
V
a
l
u
e
s
[
b
a
s
i
s
]
[
x
,
y
]
]
,
{
x
,
y
}
,
q
s
]
;
O
u
t
[
1
1
0
]
=
{
0
.
6
2
3
6
4
,
N
u
l
l
}
3D list plot of the data
I
n
[
1
1
1
]
:
=
S
h
o
w
[
L
i
s
t
P
o
i
n
t
P
l
o
t
3
D
[
d
a
t
a
,
P
l
o
t
S
t
y
l
e
R
e
d
,
P
l
o
t
R
a
n
g
e
A
l
l
]
,
P
l
o
t
3
D
[
E
v
a
l
u
a
t
e
@
V
a
l
u
e
s
@
f
u
n
c
s
,
{
x
,
b
,
c
}
,
{
y
,
b
,
c
}
,
P
l
o
t
R
a
n
g
e
A
l
l
,
P
l
o
t
S
t
y
l
e
{
O
p
a
c
i
t
y
[
0
.
6
]
}
,
M
e
s
h
N
o
n
e
,
P
e
r
f
o
r
m
a
n
c
e
G
o
a
l
"
Q
u
a
l
i
t
y
"
,
P
l
o
t
L
e
g
e
n
d
s
K
e
y
s
[
f
u
n
c
s
]
]
,
B
o
x
R
a
t
i
o
s
{
1
,
1
,
1
/
1
.
5
}
,
I
m
a
g
e
S
i
z
e
M
e
d
i
u
m
]
O
u
t
[
1
1
1
]
=
0
.
1
0
.
9
Count the number points under each surface
I
n
[
1
1
2
]
:
=
s
e
p
P
o
i
n
t
s
=
M
a
p
[
F
u
n
c
t
i
o
n
[
{
f
}
,
L
e
n
g
t
h
[
S
e
l
e
c
t
[
d
a
t
a
,
#
〚
-
1
〛
<
(
f
/
.
{
x
#
〚
1
〛
,
y
#
〚
2
〛
}
)
〚
1
〛
&
]
]
]
,
f
u
n
c
s
]
O
u
t
[
1
1
2
]
=
0
.
1
1
2
7
,
0
.
9
1
0
8
6
Here are the corresponding fractions (should correspond to the probabilities)
I
n
[
1
1
3
]
:
=
s
e
p
F
r
a
c
t
i
o
n
s
=
N
[
s
e
p
P
o
i
n
t
s
/
L
e
n
g
t
h
[
d
a
t
a
]
]
O
u
t
[
1
1
3
]
=
0
.
1
0
.
1
0
5
8
3
3
,
0
.
9
0
.
9
0
5
Pyramid basis
Define pyramid basis function
I
n
[
1
1
4
]
:
=
C
l
e
a
r
[
P
y
r
a
m
i
d
B
a
s
i
s
F
u
n
c
]
;
P
y
r
a
m
i
d
B
a
s
i
s
F
u
n
c
[
{
x
0
_
,
y
0
_
}
,
{
x
_
,
y
_
}
]
:
=
(
-
1
+
x
-
x
0
)
(
-
1
+
y
-
y
0
)
x
0
≤
x
&
&
x
≤
1
+
x
0
&
&
y
0
≤
y
&
&
y
≤
1
+
y
0
-
(
(
-
1
+
x
-
x
0
)
(
1
+
y
-
y
0
)
)
x
0
≤
x
&
&
x
≤
1
+
x
0
&
&
y
0
≤
1
+
y
&
&
y
≤
1
+
y
0
0
x
≥
x
0
|
|
1
+
x
<
x
0
|
|
y
>
1
+
y
0
|
|
1
+
y
<
y
0
-
(
(
1
+
x
-
x
0
)
(
-
1
+
y
-
y
0
)
)
x
0
≤
1
+
x
&
&
x
≤
1
+
x
0
&
&
y
0
≤
y
&
&
y
≤
1
+
y
0
(
1
+
x
-
x
0
)
(
1
+
y
-
y
0
)
T
r
u
e
;
Here is a plot of a basis function
Make basis for the sombrero data
Find regression quantiles for probability 0.2
Plot data and regression quantiles together
Square sombrero
Generate random, "square sombrero" data
3D list plot of the data
Data summary
NURBS basis
Quantile regression of probability 0.9
Plot functions and data
Partial sombrero
Generate random, "partial sombrero" data
3D list plot of the data
NURBS basis
Regression quantiles
Plot data and regression quantiles together
The plot above with corresponding exclusion region
Count the number points under each surface
Here are the corresponding fractions (should correspond to the probabilities)