Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NumberTheoryUtilities
Guides
UtilitiesBreakdown
Symbols
ChordTrailsPlot
SpiralLattice
SunflowerEmbedding
SunflowerEmbeddingPlot
TriangleMatrixEmbedding
AntonAntonov`NumberTheoryUtilities`
S
u
n
f
l
o
w
e
r
E
m
b
e
d
d
i
n
g
S
u
n
f
l
o
w
e
r
E
m
b
e
d
d
i
n
g
[
n
]
g
i
v
e
s
t
h
e
s
u
n
f
l
o
w
e
r
e
m
b
e
d
d
i
n
g
f
o
r
t
h
e
f
i
r
s
t
n
p
o
s
i
t
i
v
e
i
n
t
e
g
e
r
s
.
S
u
n
f
l
o
w
e
r
E
m
b
e
d
d
i
n
g
[
n
,
f
]
u
s
e
t
h
e
f
u
n
c
t
i
o
n
f
t
o
a
s
s
i
g
n
g
r
o
u
p
v
a
l
u
e
f
o
r
e
a
c
h
i
n
t
e
g
e
r
.
S
u
n
f
l
o
w
e
r
E
m
b
e
d
d
i
n
g
[
n
,
f
,
a
]
u
s
e
t
h
e
a
n
g
l
e
a
f
o
r
t
h
e
s
p
i
r
a
l
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
3
)
Basic Examples
(
1
)
Get the sunflower embedding for the first 30 positive integers:
I
n
[
1
]
:
=
S
u
n
f
l
o
w
e
r
E
m
b
e
d
d
i
n
g
[
1
0
]
O
u
t
[
1
]
=
x
C
o
s
2
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
S
i
n
2
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
2
C
o
s
4
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
2
S
i
n
4
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
3
C
o
s
6
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
3
S
i
n
6
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
2
C
o
s
8
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
2
S
i
n
8
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
5
C
o
s
1
0
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
5
S
i
n
1
0
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
6
C
o
s
1
2
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
6
S
i
n
1
2
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
7
C
o
s
1
4
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
7
S
i
n
1
4
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
2
2
C
o
s
1
6
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
2
2
S
i
n
1
6
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
3
C
o
s
1
8
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
3
S
i
n
1
8
π
2
G
o
l
d
e
n
R
a
t
i
o
,
x
1
0
C
o
s
2
0
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
1
0
S
i
n
2
0
π
2
G
o
l
d
e
n
R
a
t
i
o
Use the second argument to specify groups in the embedding:
I
n
[
2
]
:
=
S
u
n
f
l
o
w
e
r
E
m
b
e
d
d
i
n
g
[
1
0
,
B
o
o
l
e
@
*
P
r
i
m
e
Q
]
O
u
t
[
2
]
=
x
C
o
s
2
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
S
i
n
2
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
0
,
x
2
C
o
s
4
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
2
S
i
n
4
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
1
,
x
3
C
o
s
6
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
3
S
i
n
6
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
1
,
x
2
C
o
s
8
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
2
S
i
n
8
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
0
,
x
5
C
o
s
1
0
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
5
S
i
n
1
0
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
1
,
x
6
C
o
s
1
2
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
6
S
i
n
1
2
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
0
,
x
7
C
o
s
1
4
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
7
S
i
n
1
4
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
1
,
x
2
2
C
o
s
1
6
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
2
2
S
i
n
1
6
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
0
,
x
3
C
o
s
1
8
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
3
S
i
n
1
8
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
0
,
x
1
0
C
o
s
2
0
π
2
G
o
l
d
e
n
R
a
t
i
o
,
y
1
0
S
i
n
2
0
π
2
G
o
l
d
e
n
R
a
t
i
o
,
g
r
o
u
p
0
S
c
o
p
e
(
1
)
A
p
p
l
i
c
a
t
i
o
n
s
(
1
)
S
e
e
A
l
s
o
S
u
n
f
l
o
w
e
r
E
m
b
e
d
d
i
n
g
P
l
o
t
"
"