Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

MonadicQuantileRegression

Guides

  • Quantile regression pipeline functions

Symbols

  • QRMonModifyContext
  • QRMonAddToContext
  • QRMonAssignContextTo
  • QRMonAssignTo
  • QRMonAssignValueTo
  • QRMonBandsSequence
  • QRMonBind
  • QRMonChowTestStatistic
  • QRMonConditionalCDF
  • QRMonConditionalCDFPlot
  • QRMonContexts
  • QRMonDateListPlot
  • QRMonDeleteMissing
  • QRMonDropData
  • QRMonDropDataPlotOptions
  • QRMonDropFromContext
  • QRMonDropNet
  • QRMonDropOutlierRegressionFunctions
  • QRMonDropOutliers
  • QRMonDropRegressionFunctions
  • QRMonDropRegressionFunctionsPlotOptions
  • QRMonEchoContext
  • QRMonEchoDataSummary
  • QRMonEchoFunctionContext
  • QRMonEchoFunctionValue
  • QRMonEcho
  • QRMonEchoValue
  • QRMonErrorPlots
  • QRMonErrors
  • QRMonEvaluate
  • QRMonFail
  • QRMonFindLocalExtrema
  • QRMonFit
  • QRMonFold
  • QRMonGetData
  • QRMonGridSequence
  • QRMonIfElse
  • QRMonIf
  • QRMonIterate
  • QRMonLeastSquaresFit
  • QRMonLocalExtrema
  • QRMonModule
  • QRMonMovingAverage
  • QRMonMovingMap
  • QRMonMovingMedian
  • QRMon
  • QRMonNest
  • QRMonNestWhile
  • QRMonNetRegression
  • QRMonOption
  • QRMonOutliers
  • QRMonOutliersPlot
  • QRMonPickPathPoints
  • QRMonPlot
  • QRMonPutContext
  • QRMonPutValue
  • QRMonQuantileRegressionFit
  • QRMonQuantileRegression
  • QRMonRegressionFit
  • QRMonRegression
  • QRMonRescale
  • QRMonRetrieveFromContext
  • QRMonSeparate
  • QRMonSeparateToFractions
  • QRMonSetContext
  • QRMonSetData
  • QRMonSetDataPlotOptions
  • QRMonSetNet
  • QRMonSetOutlierRegressionFunctions
  • QRMonSetOutliers
  • QRMonSetRegressionFunctions
  • QRMonSetRegressionFunctionsPlotOptions
  • QRMonSetValue
  • QRMonSimulate
  • QRMonSucceed
  • QRMonTakeContext
  • QRMonTakeData
  • QRMonTakeDataPlotOptions
  • QRMonTakeNet
  • QRMonTakeOutlierRegressionFunctions
  • QRMonTakeOutliers
  • QRMonTakeRegressionFunctions
  • QRMonTakeRegressionFunctionsPlotOptions
  • QRMonTakeValue
  • QRMonUnit
  • QRMonUnitQ
  • QRMonWhen
  • $QRMonFailure
AntonAntonov`MonadicQuantileRegression`
QRMonQuantileRegressionFit
​
QRMonLinearRegressionFit[ funcs : ( _List | _Integer), probs_?VectorQ ] does a
Quantile
regression fit using specified functions to fit and probabilities. An integer funcs specifies a
ChebyshevT
polynomials basis.
​
Details and Options

Examples  
(3)
Basic Examples  
(1)
Here is random data:
In[1]:=
SeedRandom[32];​​distData=Table[x,Exp[-x^2]+RandomVariate[NormalDistribution[0,.15√(Abs[1.5-x]/1.5)]],{x,-3,3,.01}];
Here is a QR pipeline that finds and plots the regression quantiles at probabilities 0.25, 0.5, and 0.75 using a Chebyshev polynomial basis with 8 functions :
In[2]:=
QRMonUnit
[distData]⟹​​
QRMonEchoDataSummary
⟹​​
QRMonQuantileRegressionFit
[8]⟹​​
QRMonPlot
;
»
Data summary:
1 Regressor
Min
-3.
1st Qu
-1.5025
Mean
-4.4335×
-17
10
Median
0.
3rd Qu
1.5025
Max
3.
,
2 Value
Min
-0.520979
1st Qu
0.0201235
Median
0.17207
Mean
0.292676
3rd Qu
0.550144
Max
1.343

»
Plot:
0.25
0.5
0.75
Options  
(2)

SeeAlso
QRMonQuantileRegression
 
▪
QRMonDateListPlot
 
▪
QRMonPlot
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com