Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

JavaTriesWithFrequencies

Guides

  • Java Tries with frequencies

Tech Notes

  • English words infixes study

Symbols

  • JavaTrieClassify
  • JavaTrieClone
  • JavaTrieComparisonGrid
  • JavaTrieContainsQ
  • JavaTrieCreateBySplit
  • JavaTrieCreate
  • JavaTrieEqualQ
  • JavaTrieForm
  • JavaTrieGetWords
  • JavaTrieHasCompleteMatchQ
  • JavaTrieInsert
  • JavaTrieInstall
  • JavaTrieJSONRootToLeafPaths
  • JavaTrieKeyQ
  • JavaTrieLeafProbabilities
  • JavaTrieMapOptimizationCall
  • JavaTrieMemberQ
  • JavaTrieMerge
  • JavaTrieNodeCounts
  • JavaTrieNodeProbabilities
  • JavaTrieParetoFractionRemove
  • JavaTriePosition
  • JavaTriePrune
  • JavaTrieRandomChoice
  • JavaTrieRegexRemove
  • JavaTrieRetrieve
  • JavaTrieRootToLeafPaths
  • JavaTrieShrinkInternalNodes
  • JavaTrieShrink
  • JavaTrieThresholdRemove
  • JavaTrieToJSON
  • JSONTrieToRules
AntonAntonov`JavaTriesWithFrequencies`
JavaTrieClassify
​
JavaTrieClassify
[jTr_,record_]
classifies a record using a Java trie.
​
​
JavaTrieClassify
[jTr_,record_,prop_]
gives specified property of the classification.
​
Details and Options

Examples  
(4)
Basic Examples  
(1)
Connect to Java's implementation:
In[1]:=
JavaTrieInstall
[FileNameJoin[{$HomeDirectory,"Downloads","Java-TriesWithFrequencies.jar"}]]
Here is a list of dictionary words starting with "ca":
In[2]:=
words=DictionaryLookup["c*"];​​Length[words]
Out[2]=
7831
Here we make trie:
In[3]:=
jTr=
JavaTrieNodeProbabilities
@
JavaTrieCreateBySplit
@words
Out[3]=
«JavaObject[main.java.ml.TriesWithFrequencies.Trie]»
Here are the statistics of the trie:
In[4]:=
JavaTrieNodeCounts
[jTr]
Out[4]=
total17412,internal12116,leaves5296
Here we find the most probable ending character of a word starting with "car":
In[5]:=
JavaTrieClassify
[jTr,Characters@"car"]
Out[5]=
s
Here get all characters with their probabilities:
In[6]:=
JavaTrieClassify
[jTr,Characters@"car","Probabilities"]
Out[6]=
s0.3875,d0.096875,r0.08125,e0.08125,g0.078125,y0.0625,l0.053125,n0.05,t0.04375,m0.015625,c0.015625,p0.009375,k0.00625,o0.003125,h0.003125,b0.003125,u0.003125,i0.003125,a0.003125
Here is the sum of the probabilities above:
In[7]:=
Total[%]
Out[7]=
1.
Options  
(1)

Applications  
(1)

Properties & Relations  
(1)

SeeAlso
JavaTrieLeafProbabilities
 
▪
JavaTrieRandomChoice
RelatedGuides
▪
Java Tries with frequencies
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com