Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
DimensionReducers
Guides
Dimension reduction functions
Symbols
BasisVectorInterpretation
FastICA
GDCLSGlobal
GDCLS
IndependentComponentAnalysis
LeftNormalizeMatrixProduct
NearestWords
NonNegativeMatrixFactorizationGlobal
NonNegativeMatrixFactorization
NormalizeMatrixProduct
RightNormalizeMatrixProduct
AntonAntonov`DimensionReducers`
I
n
d
e
p
e
n
d
e
n
t
C
o
m
p
o
n
e
n
t
A
n
a
l
y
s
i
s
I
n
d
e
p
e
n
d
e
n
t
C
o
m
p
o
n
e
n
t
A
n
a
l
y
s
i
s
[
m
a
t
,
k
]
d
e
c
o
m
p
o
s
e
s
t
h
e
m
a
t
r
i
x
m
a
t
i
n
t
o
k
c
o
m
p
o
n
e
n
t
s
.
I
n
d
e
p
e
n
d
e
n
t
C
o
m
p
o
n
e
n
t
A
n
a
l
y
s
i
s
[
m
a
t
,
k
,
o
p
t
s
]
d
e
c
o
m
p
o
s
e
s
m
a
t
u
s
i
n
g
t
h
e
o
p
t
i
o
n
s
o
p
t
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
0
)
Basic Examples
(
1
)
Here is a random integer matrix:
I
n
[
1
]
:
=
S
e
e
d
R
a
n
d
o
m
[
7
]
;
m
a
t
=
R
a
n
d
o
m
I
n
t
e
g
e
r
[
1
0
,
{
4
,
3
}
]
;
M
a
t
r
i
x
F
o
r
m
[
m
a
t
]
O
u
t
[
1
]
/
/
M
a
t
r
i
x
F
o
r
m
=
4
7
4
1
0
8
8
5
3
4
5
4
5
Here are the Independent Component Analysis matrix factors:
I
n
[
2
]
:
=
{
A
,
S
}
=
I
n
d
e
p
e
n
d
e
n
t
C
o
m
p
o
n
e
n
t
A
n
a
l
y
s
i
s
[
m
a
t
,
3
]
;
R
o
w
[
{
M
a
t
r
i
x
F
o
r
m
[
A
]
,
M
a
t
r
i
x
F
o
r
m
[
S
]
}
]
O
u
t
[
2
]
=
-
2
.
8
6
0
1
8
-
1
.
8
1
1
2
9
-
2
.
5
6
6
8
1
-
2
.
8
6
0
6
5
0
.
1
8
6
1
0
3
-
4
.
5
6
9
4
1
-
0
.
8
5
9
0
7
0
.
1
8
7
6
-
2
.
5
7
1
-
0
.
8
6
1
7
5
8
-
1
.
8
1
5
-
4
.
5
6
8
3
9
-
1
.
0
0
0
3
5
-
2
.
0
0
0
3
9
-
0
.
7
5
0
5
7
3
1
.
4
9
8
6
0
.
0
0
0
4
5
7
8
0
9
0
.
7
4
8
7
8
6
-
1
.
5
0
1
1
6
-
0
.
4
9
8
4
2
-
1
.
2
5
0
3
8
Here is the matrix product of the obtained factors:
I
n
[
3
]
:
=
M
a
t
r
i
x
F
o
r
m
[
A
.
S
]
O
u
t
[
3
]
/
/
M
a
t
r
i
x
F
o
r
m
=
4
.
7
.
4
.
1
0
.
8
.
8
.
5
.
3
.
4
.
5
.
4
.
5
.
S
c
o
p
e
(
1
)
O
p
t
i
o
n
s
(
5
)
A
p
p
l
i
c
a
t
i
o
n
s
(
1
)
P
r
o
p
e
r
t
i
e
s
&
R
e
l
a
t
i
o
n
s
(
1
)
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
1
)
S
e
e
A
l
s
o
S
i
n
g
u
l
a
r
V
a
l
u
e
D
e
c
o
m
p
o
s
i
t
i
o
n
▪
N
o
n
N
e
g
a
t
i
v
e
M
a
t
r
i
x
F
a
c
t
o
r
i
z
a
t
i
o
n
▪
D
i
m
e
n
s
i
o
n
R
e
d
u
c
t
i
o
n
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
D
i
m
e
n
s
i
o
n
r
e
d
u
c
t
i
o
n
f
u
n
c
t
i
o
n
s
"
"