Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

DimensionReducers

Guides

  • Dimension reduction functions

Symbols

  • BasisVectorInterpretation
  • FastICA
  • GDCLSGlobal
  • GDCLS
  • IndependentComponentAnalysis
  • LeftNormalizeMatrixProduct
  • NearestWords
  • NonNegativeMatrixFactorizationGlobal
  • NonNegativeMatrixFactorization
  • NormalizeMatrixProduct
  • RightNormalizeMatrixProduct
AntonAntonov`DimensionReducers`
IndependentComponentAnalysis
​
IndependentComponentAnalysis[mat,k]
decomposes the matrix mat into k components.
​
​
IndependentComponentAnalysis[mat,k,opts]
decomposes mat using the options opts.
​
Details and Options

Examples  
(10)
Basic Examples  
(1)
Here is a random integer matrix:
In[1]:=
SeedRandom[7];​​mat=RandomInteger[10,{4,3}];​​MatrixForm[mat]
Out[1]//MatrixForm=
4
7
4
10
8
8
5
3
4
5
4
5
Here are the Independent Component Analysis matrix factors:
In[2]:=
{A,S}=
IndependentComponentAnalysis
[mat,3];​​Row[{MatrixForm[A],MatrixForm[S]}]
Out[2]=
-2.86018
-1.81129
-2.56681
-2.86065
0.186103
-4.56941
-0.85907
0.1876
-2.571
-0.861758
-1.815
-4.56839
-1.00035
-2.00039
-0.750573
1.4986
0.000457809
0.748786
-1.50116
-0.49842
-1.25038
Here is the matrix product of the obtained factors:
In[3]:=
MatrixForm[A.S]
Out[3]//MatrixForm=
4.
7.
4.
10.
8.
8.
5.
3.
4.
5.
4.
5.
Scope  
(1)

Options  
(5)

Applications  
(1)

Properties & Relations  
(1)

Possible Issues  
(1)

SeeAlso
SingularValueDecomposition
 
▪
NonNegativeMatrixFactorization
 
▪
DimensionReduction
RelatedGuides
▪
Dimension reduction functions
​
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com