Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

ClassifierEnsembles

Guides

  • Ensembles of classifiers

Tech Notes

  • ROC for classifier ensembles, bootstrapping, damaging, and interpolation

Symbols

  • ClassifyByThreshold
  • EnsembleClassifierConfusionMatrix
  • EnsembleClassifierMeasurements
  • EnsembleClassifier
  • EnsembleClassifierProbabilities
  • EnsembleClassifierROCData
  • EnsembleClassifierROCPlots
  • EnsembleClassifierVotes
  • EnsembleClassifyByThreshold
  • EnsembleClassify
  • ResamplingEnsembleClassifier
AntonAntonov`ClassifierEnsembles`
ResamplingEnsembleClassifier
​
ResamplingEnsembleClassifier
[{(_String|{_String,_?
NumberQ
}|{_String,_?
NumberQ
,_Integer})..},data_]
builds an ensemble classifier based on a specification.
​
Examples  
(1)
Basic Examples  
(1)
Get training data:
In[1]:=
data=ExampleData[{"MachineLearning","Titanic"},"TrainingData"];​​data=((Flatten@*List)@@@data)〚All,{1,2,3,-1}〛;​​trainingData=DeleteCases[data,{___,_Missing,___}];
Get testing data:
In[2]:=
data=ExampleData[{"MachineLearning","Titanic"},"TestData"];​​data=((Flatten@*List)@@@data)〚All,{1,2,3,-1}〛;​​testData=DeleteCases[data,{___,_Missing,___}];
Make nine classifiers using three different methods:
In[3]:=
aCLs=
ResamplingEnsembleClassifier
[{{"NearestNeighbors",0.9,3},{"RandomForest",0.8,3},{"SupportVectorMachine",0.9,3}},Thread[trainingData〚All,1;;-2〛trainingData〚All,-1〛]];​​aCLs//Length
Out[3]=
9
Display the elements of the ensemble classifier:
In[4]:=
ResourceFunction["GridTableForm"][List@@@Normal[aCLs],TableHeadings{"Classifier name","Classifier"}]
Out[4]=
#
Classifier name
Classifier
1
NearestNeighbors[1,0.9]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

2
NearestNeighbors[2,0.9]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

3
NearestNeighbors[3,0.9]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

4
RandomForest[1,0.8]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

5
RandomForest[2,0.8]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

6
RandomForest[3,0.8]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

7
SupportVectorMachine[1,0.9]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

8
SupportVectorMachine[2,0.9]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

9
SupportVectorMachine[3,0.9]
ClassifierFunction
Input type: {Nominal,Numerical,Nominal}
Classes: died,survived

Compute classifier measurements:
In[5]:=
measures={"Accuracy","Precision","Recall"};​​
EnsembleClassifierMeasurements
[aCLs,Thread[testData〚All,1;;-2〛testData〚All,-1〛],measures]//AssociationThread[measures,#]&
Out[5]=
Accuracy0.780255,Precisiondied0.812183,survived0.726496,Recalldied0.833333,survived0.696721
SeeAlso
EnsembleClassifierMeasurements
RelatedGuides
▪
Ensembles of classifiers
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com