Open search form
Open main navigation
Products & Services
Technologies
Solutions
Support & Learning
Company
Open search form
Wolfram Language
Paclet Repository
(
Under Development
)
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
External Interfaces & Connections
Geographic Data & Computation
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Sound & Video
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Get Started
Using Paclets
Creating Paclets
New Definition Notebook
Random Paclet
Alphabetical List
Home
Guides
Guide
Symbols
Quantum
Basis
Quantum
Circuit
Operator
Quantum
Distance
Quantum
Entangled
Q
Quantum
Entanglement
Monotone
Quantum
Measurement
Quantum
Measurement
Operator
Quantum
Operator
Quantum
Partial
Trace
Quantum
State
Quantum
Tensor
Product
Qudit
Basis
Tutorials
Tutorial
Wolfram`QuantumFramework`
Q
u
a
n
t
u
m
E
n
t
a
n
g
l
e
m
e
n
t
M
o
n
o
t
o
n
e
Q
u
a
n
t
u
m
E
n
t
a
n
g
l
e
m
e
n
t
M
o
n
o
t
o
n
e
[
q
s
,
s
,
t
]
c
o
m
p
u
t
e
s
t
h
e
e
n
t
a
n
g
l
e
m
e
n
t
m
o
n
o
t
o
n
e
(
m
e
a
s
u
r
e
)
w
i
t
h
m
e
t
r
i
c
t
o
n
t
h
e
q
u
a
n
t
u
m
s
t
a
t
e
q
s
b
e
t
w
e
e
n
s
u
b
s
y
s
t
e
m
s
o
n
b
i
p
a
r
t
i
t
i
o
n
l
i
s
t
s
.
D
e
t
a
i
l
s
Examples
(
1
0
)
Basic Examples
(
3
)
Compute the concurrence of a quantum state:
I
n
[
2
]
:
=
Q
u
a
n
t
u
m
E
n
t
a
n
g
l
e
m
e
n
t
M
o
n
o
t
o
n
e
Q
u
a
n
t
u
m
S
t
a
t
e
[
{
0
.
6
,
0
,
0
,
0
.
8
}
]
,
{
{
1
}
,
{
2
}
}
,
"
C
o
n
c
u
r
r
e
n
c
e
"
O
u
t
[
2
]
=
0
.
9
6
—
—
—
Compute entanglement entropy:
I
n
[
1
]
:
=
Q
u
a
n
t
u
m
E
n
t
a
n
g
l
e
m
e
n
t
M
o
n
o
t
o
n
e
Q
u
a
n
t
u
m
S
t
a
t
e
[
{
0
.
6
,
0
,
0
,
0
.
8
}
]
,
{
{
1
}
,
{
2
}
}
,
"
E
n
t
a
n
g
l
e
m
e
n
t
E
n
t
r
o
p
y
"
I
n
[
2
]
:
=
Q
u
a
n
t
u
m
E
n
t
a
n
g
l
e
m
e
n
t
M
o
n
o
t
o
n
e
Q
u
a
n
t
u
m
S
t
a
t
e
[
{
0
.
6
`
,
0
,
0
,
0
.
8
`
}
]
,
{
{
1
}
,
{
2
}
}
,
"
E
n
t
a
n
g
l
e
m
e
n
t
E
n
t
r
o
p
y
"
O
u
t
[
2
]
=
0
.
9
4
2
6
8
3
b
—
—
—
Compute logarithmic negativity:
I
n
[
1
]
:
=
Q
u
a
n
t
u
m
E
n
t
a
n
g
l
e
m
e
n
t
M
o
n
o
t
o
n
e
Q
u
a
n
t
u
m
S
t
a
t
e
[
{
0
.
6
,
0
,
0
,
0
.
8
}
]
,
{
{
1
}
,
{
2
}
}
,
"
L
o
g
N
e
g
a
t
i
v
i
t
y
"
O
u
t
[
1
]
=
0
.
9
7
0
8
5
4
S
c
o
p
e
(
3
)
A
p
p
l
i
c
a
t
i
o
n
s
(
3
)
P
r
o
p
e
r
t
i
e
s
&
R
e
l
a
t
i
o
n
s
(
1
)
S
e
e
A
l
s
o
Q
u
a
n
t
u
m
S
t
a
t
e