NoahH/CreateCoil

(1.0.2) current version: 1.1.2 »

Create simple, discrete coils using current-carrying loops, saddles or ellipses to generate magnetic fields

Contributed by: Noah Hardwicke, Peter J. Hobson, Michael Packer

Create simple coils made from cylindrical loop, saddle, or ellipse-based primitives, optimised to generate a target magnetic field harmonic. Visualise and examine the coils and the magnetic fields they generate.

CreateCoil implements the theoretical model derived in Designing optimal loop, saddle, and ellipse-based magnetic coils by spherical harmonic mapping.

We will soon be adding the ability to export coil data and field data, so check back for updates!

Installation Instructions

To install this paclet in your Wolfram Language environment, evaluate this code:
PacletInstall["NoahH/CreateCoil"]


To load the code after installation, evaluate this code:
Needs["NoahH`CreateCoil`"]

Details

Coils are built from loop, saddle, or ellipse-based primitives. They are optimised to generate a desired magnetic field harmonic of order n and degree m, denoted Bn,m.
Loop primitives are pairs of axially-separated loops, which generate zonal field harmonics of total azimuthal symmetry (Bn,0). The axially-separated pairs carry the same current if n is odd and opposite current if n is even.
Saddle and ellipse-based primitives both generate tesseral field harmonics. They contain a number of axially-separated and azimuthally-periodic saddles or ellipses, whose periodicity matches that of the generated field harmonic. The axially separated sets carry the same current if n+m is odd and opposite current if n+m is even.

Examples

Basic Examples (2) 

Compare the uniform axial Bz field (encoded as the B1,0 field harmonic) generated by a Helmholtz pair, and by three optimised pairs of loops covering the same axial extent:

In[1]:=
{solHelm, sol3Pairs} = First /@ {InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["FindLoopCoil", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`FindLoopCoil\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindLoopCoil"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindLoopCoil"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][{1}, 1, {0.01, 1}], InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["FindLoopCoil", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`FindLoopCoil\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindLoopCoil"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindLoopCoil"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][{1, -3, 3}, 1, {0.1, 0.5}]}
Out[1]=
In[2]:=
{InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["LoopFieldPlot", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`LoopFieldPlot\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`LoopFieldPlot"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`LoopFieldPlot"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][solHelm, {1}, 1, 1, ImageSize -> Medium, PlotRange -> {.75, .95}][[
  3]], InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["LoopFieldPlot", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`LoopFieldPlot\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`LoopFieldPlot"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`LoopFieldPlot"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][sol3Pairs, {1, -3, 3},
    1, 1, ImageSize -> Medium, PlotRange -> {.75, .95}][[3]]}
Out[3]=

Optimise a saddle coil and an ellipse coil to generate the uniform transverse Bx field (encoded as the B1,1 field harmonic):

In[4]:=
{saddle, ellipse} = {First /@ InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["FindSaddleCoil", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`FindSaddleCoil\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindSaddleCoil"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindSaddleCoil"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][{1, -2, 2}, {1, 1}, 2, {.01, 3}], First@InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["FindEllipseCoil", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`FindEllipseCoil\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindEllipseCoil"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindEllipseCoil"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][{1, -1, 2}, {1, 1}, {0.1, 2}, {0.1, 0.5}]}
Out[4]=

Visualise the coils as 2D schematics:

In[5]:=
{InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["SaddleCoilPlot", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`SaddleCoilPlot\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`SaddleCoilPlot"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`SaddleCoilPlot"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][saddle["AxialSeparations"], saddle["AzimuthalExtents"], {1, -2, 2}, 1, {1, 1}, ImageSize -> 450,
   "ArrowheadScaling" -> .007], InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["EllipseCoilPlot", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`EllipseCoilPlot\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`EllipseCoilPlot"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`EllipseCoilPlot"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][ellipse, {1, -1, 2}, 1, {1, 1}, ImageSize -> 450, "ArrowheadScaling" -> .007]}
Out[5]=

Visualise the coils as 3D plots. Colour each ellipse primitive differently to distinguish them more easily:

In[6]:=
{InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["SaddleCoilPlot3D", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`SaddleCoilPlot3D\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`SaddleCoilPlot3D"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`SaddleCoilPlot3D"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][saddle["AxialSeparations"], saddle["AzimuthalExtents"], {1, -2, 2}, 1, {1, 1}, ImageSize -> 450,
   "ThicknessScaling" -> .002],
 InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["EllipseCoilPlot3D", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`EllipseCoilPlot3D\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`EllipseCoilPlot3D"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`EllipseCoilPlot3D"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][ellipse, {1, -1, 2}, 1, {1, 1}, ImageSize -> 450, "ThicknessScaling" -> .0035, PlotStyle -> Automatic]}
Out[6]=

Plot the Bx field component generated by each coil in the xz-plane:

In[7]:=
{InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["SaddleFieldPlot2D", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`SaddleFieldPlot2D\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`SaddleFieldPlot2D"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`SaddleFieldPlot2D"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][saddle["AxialSeparations"], saddle["AzimuthalExtents"], {1, -2, 2}, 1, {1, 1}, ImageSize -> 370][[1]],
 InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["EllipseFieldPlot2D", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`EllipseFieldPlot2D\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`EllipseFieldPlot2D"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`EllipseFieldPlot2D"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][ellipse, {1, -1, 2}, 1, {1, 1}, ImageSize -> 370][[1]]}
Out[8]=

Scope (3) 

The search domain can be constrained to account for physical constraints. Optimise a loop coil of three pairs to generate the B2,0 field harmonic, with axial separations constrained between 0.5 and 1 times the coil radius:

In[9]:=
sols = InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["FindLoopCoil", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`FindLoopCoil\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindLoopCoil"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindLoopCoil"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][{1, -2, 2}, 2, {0.5, 1}, "CoilsReturned" -> 3]
Out[9]=
In[10]:=
InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["LoopCoilPlot", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`LoopCoilPlot\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`LoopCoilPlot"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`LoopCoilPlot"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][First[sols], {1, -2, 2}, 1,
  2]
Out[10]=

When the mouse hovers over a wire in a 2D or 3D coil plot, all other wires belonging to the same coil primitive are highlighted, and a tooltip shows the parameters describing that primitive:


By default, FindLoopCoil, FindSaddleCoil, and FindEllipseCoil null one fewer leading-order error field harmonics than there are coil parameters, meaning that solutions lie on a 1D contour embedded in a solution space whose dimensionality is equal to the number of coil parameters. Points are found on the solution contour by searching over a coarse mesh of search seeds. These points are interpolated to produce a fine mesh of search seeds, which yield the final set of solutions:

In[11]:=
InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["FindSaddleCoil", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`FindSaddleCoil\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindSaddleCoil"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindSaddleCoil"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][{1, -1, 2}, {1, 1}, 1, {.1, 2}, "PrintSteps" -> True];
In[12]:=
\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztXQlUVEfW1piYGGeyzWRmMjPnzPknHs/MmMkxdjIJRCfqmLgQUVR0FFwQ
jaJxX0CNQWPclbgQ12gcFXcTFfcdlwhuuCAKCIiAigoiNraaaP6PvnIt3tav
oZsl1HeuHLteVb269bruV7ferer/6z6gzSdPValSZchz+NMmILjR4MEBI9q+
hA++/YcE9erfs0fz/kN79uo5+L3u1ZBYD/+aIX/B/3+WkJCQkJCQkJAol3jw
4EF+Udy7d6+sGyUhIeEa5Kvw6NGjsm6UhIR7ERAQUKUo6tWrV9aNkpCQcAFi
YmKqqHDkyJGybpeEhHvRtWtXxdf+rbfeKutGSUhIuADR0dFqXjt8+HBZt0tC
wr0gXqtevXpYIVasWFHWjZKQkHABsrKyeFz7+flJXpOoJCBee+mll0zmz7Na
069cTUhOOZeQGHchQYoUKWUoGIYYjBiSGJjGI3fNmjWS1yQqCczz2r3795PT
0sp8IEuRIkVTMDwxSPXGr+Q1icoDk7x2x5ofn5iEsYO/mdeu5+ZZ8233bfd/
lCJFShkKhiEGI4YkD08MVc0hLHlNovLADK9hEkijJvVyuqQzKVJcK2AlSAkr
wcDE8CRq0/TaJK9JVB6Y4TVafsSouXvvQZkbASlSfmHiEl6DYHgStWHAqkdx
KfDa7du3t27dir9uqr/8oPJoWkHhkNfyrFaaBEpPTYoUd4ireM1m99poaUU9
kN3Na9u3b3/uuYIDvPB3165d7rhFOUEF0vT48eMdtPDw4cOybpp74ZDX0q9c
xTBx1biTIkWKQlzIa1RbsXnt0aNHcEM22nHjxg2nLEmzZs14i5yPj49TZUuO
/fv3bywKME5cXFxubq7L71WBNMVV9QZG4McffyzlZquRnp5u8B3Lz8/ftGkT
64ivZWJiovlmO+S1hOQUDJPcPGuZD38pZSjbtu+4cjWrzJtR4WTv/qjsW7eN
87iW1zBUi81r9+7dY9O3Z88ekzaE8Omnn3LZwMBAp8oa4NKlS4PtWL9+vUG2
P//5z5oGvGrVqi1atNi9e7er2vNzhdJ027ZtpcNrCxYsQMuHDh16Xz8iF8DV
qVOnNm7c+JVXXqGW1KxZs1GjRpGRkYrj3eBpqptdvXr1OnXqLFmyxGF7HPIa
7VMrz4uQF5NT90cdjI45Vmp3jDpwCHdMz7xa5rqXgly/mdN/wECLxbJ12w63
3uhmTu7GyM2zw7+eM3feseMnK2jPH/4hGi1MvXTZZn/h1bx58969g/Ksdw2K
uJbXMFTLhNdSU1O9vb1hpvA3OTnZqbIG2LBhA7Wnb9++Btn0rD3b/LVr17qq
SRVL04eFEDnO5bxWt25dqtnABYNfWbt2bb2WgxbFzJq8xmjYsKFxzzvkNdoa
ozeIzsVf2Lxlq55s2bYdQzs37878BQuXLlvuJksSOmYsrK5PmzalY7guZ2Ra
7ICCJa/N3Z1TQsm6cbNTJz8o++GHH55PSHTfjaIOHsItLIUAtSHx+MnYadOn
nzuf4I6ed4fk5Oa9/fbbaOGyiBWU0vOTT/Bx2PBgg5gr1/IapEx4zU0IDw93
ytr7+vrOmTMHpcaMGdOmTZtnnnmG0p9//vnMzMxSa3Yx4G5Nd+zY4T5e++1v
f+uQ16AX5Xn66acxTAICAvD3qaee4lZt2bKFM4u8FhwcPHLkyNatW7/88suc
iLIGbwlLyGujRn1m0cf777+P4bz+u+/pI8yUO4xJly5dUPnQYcNKx3ZhNk7q
xF9wzs5jIn37Tj5ETHR355RQevTsiba18PK6mHLJfXdJTUvHBIz6wde3/YiR
ow4dPoJ03Bcpffr0Neh5dCe61Hr3Xpn3lc1OxNTCw0eiKSUhKfm9995DCmmk
KRWU12Abc3RgvBiVlZWFNqxevXr9+vWJiYkG1slmsw0aNIjaExgYqLiL+Msj
bO1nzZol1nDo0CE2+OvWrVPf4qeffoqPj0djYPbRMJdompeXh0v4yykJCQkR
EREHDhzQe99XCpo6y2vZ2dl79+5dsWLF6dOnHzx4oJcNVYHLuOakpCSx5aK+
qKRx48YghfPnz3Pi0aNHueyAAQM4XeS1y5cvU+K1a9datWrF6XPnztVrVQl5
rWPHThizDRs28vP3V8vIUaNs9qk4cVzm1WsutyTgzfoNGvAMvxRk0eIluN27
774Li+pUQaawW7fvcKJbO6eEArcIbfvXv/4Ve+qMW280O/zrx47Y1m1ietdu
3ZA4bXqYQc8T93GespVVq9eSIteu3+TE8K/nIAVkrVeqgvLalClTquhg6dKl
mkVg0Nq2bStO0avY/Yt27drBeHK29PR0JFatWlWvfsK8efO4iJ61B/AFpkuY
84vpYDSo8Ktf/Uqss27dujExMSXRFHaeWv7Pf/7z0aNHEydO/NOf/iQqK74e
Kh1NCeZ5DUTfoEEDsQHPPvss6gT5itn69OnDTKqHP/zhD2IRTAPUP5PE9/Ly
8uJETV772U6Or7/+OqW/8sorepOikvAaJskeHh4Ys1OnTTceaJcuZ2TduOnU
2DQpKZfSyJJs37mrdGzXZ5+Nxu3at+/gbMEpU6ehYPPmzUutc0oiIN9mzZqh
wd8sWuzue9FS5387dlSkg7/g7xj0/M2cXHr6a9d9V+Y9Bvly/ARasxUTLyan
ItHT0xOt1SxVQXlt0qRJetZs2bJl6vyXLl2CldMrAtu+atUqygk7ZmwtCSat
PZvNIUOGcGJ+fv4777yjWS1oNywsrNiagjLoUo0aNby9vTVLwWiXmqYMk7y2
fPny6tWrazajdu3a169f55zdu3d32HIFr6kBr5B5X2y2Hq8B6HO+lJqaqllt
SXgNNoesyvrvNxR7DMJ2nTufkK0z5Ely86xnz8VrejS79+yjNiReTHZ4r9y8
O/EXEo2jDvJt90E0cfHn9cLYyAiHhIxwVtPevYNQsO+n/UzmRwPQM6mXLpvZ
Dg+lYD8NcprRXZSZs2YTCzvrljr7lNFm2Hzca978BcaVqHv+6LET9PRPxp7W
LHIj+9b5hESHKuDLA1H0Hj4mJF68mnXDoCDyoFc5T7duAWhMr169xTyY/sHH
RPqmyC2alVRQXtu7d+8nRcFlNXlt+PDhdBXEMXny5AMHDmzdunXq1Klvv/02
EtE/vKaXk5PDdf7+97+nUv/4xz8Ut4uKiuLK9aw9HCL2yCIiIji9X79+3Np/
//vfEyZMGDp06O9+9ztKgRsSGxtbPE2Z11hZPH0/Pz/YWE7s2LFjqWnKMMNr
mHv8+te/pjz4z4ABA/CkYAS4IDxrzrxu3TpqHvwsztClSxex5ehVzRvBWc7M
zFy8eDGUpYIvvvhiRkYGZzDgtZSUFL60c+dOzfpLwmvbtu8gqxJ7+qzeEANN
NG7cGIZrecRKSgEbenh4QqKPHuvb91P8BzXgu92//wBYIeUtduzE/Bz+Nd2o
hZfXzl17xAwLFn6DdFRiHLF5+Eg02RzCf5o0iVixUlEE1m92+NeNGjXibEF9
+ijoEkWowbgvpcBXhXYdOnRQVPXBBx8gfcXKVaAbTzu4WvwfT1+zc0hOxJ6i
eAMC8iz531KFRqNGfYaWjBn7Bcp6eX1MOdF4PJRi6K6QyxmZ9FaI4x9Ecaiy
yaecdSNb3TMtWrSgq4u/XYKPH330kWbPj/48FFepkbRYio+Y5NgK6WbR4iXQ
GnNy+nqEjhmbk5vHrS1snsf/li4jtxTgiRMmUehejmNp1ar1wUM/KDohNS0d
/mOTJo/z+LRpEx1zjJbEJ0+ZqsiMq0ifv2ChZm9XUF5Tg4O3NXkNj5J5RHFp
8+bNMFaadeL7QKVMRlOwtQdloNo33niD+YUj6MBZvPTXo0cPXstKS0v74x//
SOkgo+JpKvIaqAFtoHSbzcb+VJ06dUpHUxFmeM3Hx4dbHhcXx+mjRo3istu2
bVOUEt+Rmdn2iFmEYukVzBgfHy/mMeA1NL5atWp0ac6cOZq3KAmvfT1nLhkr
+AJ6Q4wWYYA9e/fbirIhvt6WooChEMt+HhrKl8TMh3+I5jyYvSMFM3mDYY47
UpQaGUCuR3QQYAlHjBxF6chM66tA27ZtRe1Ac5TOJhSTc3yE6RbvCB+Bsu2L
OrB3f5RFBYpyUXcOJPbUmQZ280h2nosonOJ2vr7qaqnx4ssdM7qrhd4TwfKL
rwJZHKps8imDvtXt79K1K12lx9HJz0+z5/39O6vLcjzJF+O+pBRYp/fff5/+
L7pR3DwGKJL8NfiVPLfhaBZA3Ehy/WYOvhhin4tVqRdFaaPE+AkTNHvbDK/t
FVBBeS04OJgrR+9BETPRC85a+yr2d1jPPvtslaKALeXMYARKrFmz5s2bN8V6
Zs6cyeyQn699grSxpiKvKX7LcsaMGcwapaOpCDO8xnrhYYnp+GK89tprdCkk
JERRylleCw0NFRuM3pg0aZK16A8tGfAawJ7p+PHjNW9REl4bPGQoRqu3dyuD
IbZj524a7LSjx1b4Gp0s3oaNmzBpx+TZ17e93ZB68JIRLzENHjzkYsol2Jyo
A4fISIoGCt5cgakc/bleA1AhlYKvd+jwEXw8diKWSsHocXTiuC/H0+3QvJs5
uRBM+MlB+OKLcVzb9p27FOpgFmopiFso8oZxy7btlC0tPZNSjkQfpZRTZ84a
dA4sMxnVNm3aguCgNfqBghLr16+flJzCSjFJDRs2HHWCgJYsXUYpHH1hUne1
DBla8GRhjTWvmlHZ5FO2FUSDfEuJiphG+IPik1X3vK0wXBM+oFgQDUMiPLVv
l/wPN4Is/GYRlcUcQ/ElhIeF/2OmRCuZ6GFy0/z8/WlfA757rX18kAIm5V4N
DOxBdDY97CvwILRbtjyCeQ18regxeJdIHzhoUGXmtevXr7/55puiQXvhhRfa
tWsXERFx584dvTqLYe0VAHnB3RAzBwQE0CWMKUU9586d44LR0dHF0FTktcjI
SPHSypUrKf3pp58uHU1FOOQ1uKucQb2T3dfXly41a9ZMcclZXoN36e/v37x5
czGiplatWklJSZzHgNdyc3P5ErpU8xYl4TUa7x988MHw4BCFfLdhI+WZO28+
8sAB4VLEhjB34jsRTHHJJvArmAULv8F3vlu3AHFxEhbMImxVg4WhNxeLv12i
N8Y59FpcoNu4KZISz8TFi6QDA6g2RwWtKnzXNmfuPDKGNLeHQaMM67/7XixI
AX7oGU5ZuWo1WULRA1J3DhlqEAc8Ak7k2JhZs8Mp5Vz8BUqBU8MrimgSLUiy
X2BGd7WAX8hPWbNuvfqqSZVNPmXIyFEFflnHjp3E2vBkaY2Rn6yi50loGfCr
GTM5BTREt+CFYhLqGQ6bpOahNkwbxGzUmKZNm4mv1eBNi18D/jhx0mSxbGjo
GEoXFzxJ+vTpi/QePXpqdngl4TUA/DVu3Ljf/OY3CoP86quvhoeHaxZx1tq/
/vrrDeyA2QwKCgoLC1NbWkxdKPPHH3+suAT3jVul8LZMamrAa/wIXMJrZjQV
4ZDX8MXgDCdOnFBc5VNWateurbjkLK8xHj16FBUVxRrBPHK0pAGvnTp1yqCd
hGLzWm6elV5eaALODmWDN2ERFpcgrVu3RspYwQmyFYaUAzCbBgN2woSJFvv7
DvoI74ZKwZXTK5KecYXaCZvGHgG4ADYKThmlTJ1WMMNHwxQBBtFHj1H9vLls
6LBhojoxx45TBsUUHT4mEgMCuj9p+cRJSGnp7S1mU3QOuIy8MJ4VsNDrNl7B
2xS5he6riAOh9zjMa2Z0VwuzIW+IFsWkyuafcof//hcpo0Z9JubkVU1+soqe
t9n3jFMe+IOcSN4fiEnxKGlNm4N2qHlfjPtSzEOvCJFOrwhZMq9eoxvRfgco
hf+DKBX8RS5/y5Yt1Z1GPrLCr3xSf6XhNQKMKtwB2Mm//OUvIrtNmzZNnZmt
fe/evQ3qNIgSVCMwMJAye3p6Ki6dPXuW2wNzrVeDW3nNhZqKcMhr6enpnEEd
j9G2bVu6hHYqLom8du3aNada9bP9xEsunpiYSIkGvDZgwAC+JG4SFFFsXjt9
Jo4GO4wt3ByFcHg2vYYYM/YLW1E2VAQk0Ks6TO/FxAsJSV+On+Dv3xn+C/wy
TODpRQbbh81btz027xlXDIb5p/36UbYWXl6w+dExxxSRb2Tlpod9pSjIYeQb
IzdTSps2RdRZvebxfiVF8KTabH7Sq5fasik6h9gK/aOOGyRCB7vRxxkzZ1ns
USIKs0y0KAaZONRdLeRFWop6VSxmVDb/lMGt5JfxRIiEVzX5ySp63ibMOsSl
3c6du9AtwIAkXbt1g5Bn1zsoSGyeIlxnX9QBqrCdr69Y1s/fn3kNvUfLsOrg
kIDu3S06i7e0tgxu1exwPV7bawKaFZZzXmNgcr5r165atWpRqb/+9a/qPF26
dKGr3t7eBlU5Ze35ZI/nnnvu6tWr4qXJkyfTpWrVqt29e1evBnfwmjs0FSHS
h16UDh8bMnDgQDHdarXCp6ZL6s1xYoDiyZMn9Rrw008/aQa0XLx4kYvz7yPo
8Roy8ytFDCu9exWb177fsIkGu8GxG3nWu2Rply2PsBVlQz6QgUQ9GwfLWApR
v359TIPJGQHCvppBeWjtq2HDRnoNIIEdQ06OnSPDxTGcyamPV/k4FISFL9Hm
uNt38hXqTJ48pYAyCkP4Cm93h/g3YsUTs0nGUFwxU3fOZ6M/t+jEwND6GO/w
ojiEwMAeYh5N79VYd02hUJyGDRtqXjWjsvmnjKkL5aRoExbFk1X3vK0wuEUM
W+I1Uj0MDw4Rm/dDdIx400l21QyA2Ro3WB0cQou3M2fNVqSj8VREb7W8kvDa
woULfXx8zpw5o0gPCQmhUjVr1lSXGj16NF818AWcsvZwynhveIcOHfgwjfj4
eLbe6ldvJjUtNq+5Q1MR4uszvXCL9u3bU4YaNWrw60VMP8RtEepXb+hA7k+9
wH5gzJgxzzzzzNixY8XTS/D/zp07U1lUkpOTQ+lqXkPOiIgIPkoLEw9xL78C
xea1adPDLI6O3Th7Lv6xfSuMYPxuw0ZKEWP2bIWeS+iYsfRx3frHL2IGDxka
F3+eEm9k36JEXqYbOGgQPnYPDDSw0k+sx9VrsEX0ho7sNi3iYbZPKerX/StW
rrLYHSh623ImTqnO4y1pRSMDucIj0UcV9lZcMVN3DpwRi2r3k82+ckjBDDC8
lPLxxwVvi+DEidnYx7mckWlSd00J6tMHeRRh/CxmVDb5lG1aATYkgwYNFp+s
uudthTQkLu1yfOmChd+AKNVCoSB6zaMoSsyg9kcd1JSCwJvjJ6nssRNFzj2D
X0npkZuVm9S48fxNVj6dcslrsJ+1tXDs2DG94gbWHnRGv1lWtWpVLy8v2HDY
qA0bNsDWwYRSqaZNm6rrFF/6vPbaa3AWYM9RHN/h+fPnczZnrT3ML1dbt27d
YcOGBQYGvvDCC5QCj0CMcndK02Lzmps0ZTx8+JC3yEFBfM/hlHl6egYFBXGe
jIwM3meH5wUXErMO5OGG+fn5aVbOmziq2H+7Z6odPXr0qFevHr0yA09xcD68
QnwHgoODMT0Wz3sR/S+R1zw8POrUqaM42wRUa6BssXkNls3i6NiNjZGbaUTz
W3hiQ8WBDOoFNNqB6+/fWVw043UnPtbJ27uVRT982mbfh3Xm7DnFgb279uwV
p9xPAiFUu8t7BxXY8E969XqsTmHEBasDo2pRLUmx2eRTRDi2E56CQefQAiA4
S7FUyLYUPWCz79emjytXrxGzUYwfr/KZ0V1T6PQqvWBIMyqbfMo2rQAbklat
WotPVt3ztkKGFdvJ68ZLli4z+FpS83hnHAut7oJ8DcoySYGRxXT4yJR+Lv6C
ogjctILbNW2qV2f55DU9iHuEFTCw9vv27fvb3/5mUC1s3YULFzSrxYjQLCKu
1zlr7W22glBhzWphPw0OHnSoabF5zU2aipgzZ466cugivm5bt27d888/r9mM
N998k/0pBeDcMW0pQCuTdACmwYlhisNMDM7zBxWGh4erz+MSUWxeo92sISNG
GhiBr2bMRJ4mTZ7YNwoMU7gk6gW0hg0L3kcMGx7MeW7fyR8wcCBlo/f1t24/
XvtauWq1XgMoiA7ZxODwlEtpVHDV6rWUQouEPXoWCVfjl3dcv1odeukjvjfJ
zbPSqzTRjlEcoH3F7MnP2KlrY3ZgR89mPyKe9mqhkcR3HNcRc+y42GDFKp9J
3dVC29O+HK89WzCjssmnbCv0y8QAG5uwqmnQ87bCkyFnCEu7EHJs4XIWrdC6
es1aXlig5oEWFaphnkAtVCyto5/Zl0fbKI84m7LevUedD+JWL1/Q7EixN1OU
8hM3cv/+fYdnFR45ckSvOB+TpbkOCX9h5cqVDRo0ePHFF8UK4Rd069YtIUGj
zQSwLdwrxXQdvhVKcR4OQTFv7WEYwV/swlSxr4OB7M6ePeuwrIGm4AhelHOW
19ykKQOPICwsjBxnAh43xpri/P+UlBR4UmgkZ3v55ZcnTpxovN8Q1Pb3v/9d
8W154403xIkQpjcgDt4KR3j11VfHjRunYMzY2FgxD7q0Vq1a4PcRI0bonZ0l
oni8dv1mDo1uRTS1Qvr1728R/B1bIRsqZvvqxSja6AR2271nHyzJ4SPR3QMD
KQ+frwivTdO8i8KRAMODQ+hE+oTEi1TVu+++y8tQRAEW+1mIN7Jv4Y6bIrfQ
Oyl44hwgQTEYormmEDgM1djTZ2HQTsaeJgtvKQxRIKFlVXx/aCOeXudcuXad
zHLnzl1IqcSLyeQXv/POO/zjLGvWradbKI5nebzKFzrGKd3VEhwSgjz4q3nV
jMomn7Kt0ONGnWJO1Ew5yT/V7HkIGByJoz8PRZdyr86aHU5lFy1eguYh/dSZ
s3Q697Bhww2aB8nOyaUJFXqSegzf80WLvwVbeXh4cHQKhaY0atSIliIvJCRR
LKjF/u5SUWfWjWza4693iJatPPFaqSEjI2PXrl3QJTk52eCseBGw+ZjD7969
+8CBA0lJSS78pRVYdfRJTEyMwUbs0oT7NCXAdTp16tTmzZuhskFYPpoBV+vg
wYNpaWnmK8eT3b59O1oOYsrOztbLlpWVBQVBeenp6caeV/FQPF7jJUHxoAy1
0Ix6cuFbIWZDxSIYLaCJ27iWLltu0QFvXuPj8dWnb7HArBF9EMhqETj4xGZ/
gUU7bS32o/X5sJFOfn5i5Qp1bMLGaov9wAqxneJZ0LwBDdT2nyZN9GqzFR7v
T2jcuDGX+n7Dkxdz9F5JcX6yepXPpO5qmThpskX/CBeHKpt/yuxxiwE24pPl
TXyafUVbJyx2mubIRjwvPgnE09OT4vapu2iFUK95JHBj+fAQOMj8/ylTp/E+
Qf65HIs9oknsAYpLEYXPeTM4Z7IS8pqEhFtRPF7juA5xjUshHAbG23v53CRF
hEbIiJEWu2ckEg18KDabsE7z5i8gT4GD22fY16bUx+MrBMZz5qzZ4oFU8BHU
h/+nZ1zhdU6L/bgP0Ie4zYrVEe0huAMcwUd/oJ0Lv1lEcXGKbcsU0GgpPJ5F
3TksqJ9PJoTZhKsCKhEzkAeniNxISk6hIrC6zuquEFoOFQlIFIcqm3/KHDmj
+K1zerLwqgx63mZ365isN26K5HS4XSEhI/j4rCZNPoSnxvsFuHl6RyXv3rOP
vEiLfV3Rz99fvWaL2/H5YOio2eFf00tJxelkmGw0bVrgGxr/iJLkNQkJ16KE
v7/mVoFBOxMXn5B40cyB9sYCoky8mAybpvdbISSYzMPcXbqc4VTluXl3UApO
mXE2VAt1jH+5gMR69x54CnW65Cx9k7qzpGdeJYtt8JNwJlV2t+AbcvpMHCZX
6mOc0YfgzYvJqcWrGe4VekzzeEzu1bj488ZfTgoEauntbXBkma08nXssIfHL
QHnmNSllJRSpYvzyVIqxgHDJq927z2it3iZ5TULC1ZC8JkUtFLXu4eGZnFrG
HlkFFXiyLVu2tOifdSyK5DUJCddC8poUTaHodMVbPClmJCEpmUIuA7p3N7Ps
LHlNQsK1cMhr5xISMUyMf4ZSyi9Psm5kd/Lza+3jU+YtqXBCUVUhISMMXs+J
4lpeK3jxJ3lNonLDIa8lJKdgmIgbiqVUErmRfUv9O9FSHEp6xhXFcZfG4lpe
w1CVvCZRyeGQ19KvXMUwce06iRQpUtwkGKqS1yQqORzyWp61YPoXn5gklyKl
SCnngkGKoSp5TaKSwyGvAclpaRgpqZfTS76PTIoUKW4SDE8MUgzVZK2DjySv
SVQemOG1e/cfTwIxaqTXJkVKORQMTCI1DFUMWPUolrwmUXlghteAO9Z8ojb8
zbx2PTfPKglOipQyFwxDDEYMSR6eGKqaQ1jymkTlAfFajRo1DhZC/YO2BEwC
aUFSihQp5VAwPBWeWn5+Po/r0NBQyWsSlQTEayLeeustg/x5Vmv6lasJySm0
r02KFCllKBiGGIwYkhiY6tEaHR1dRQXJaxK/eDjLaxISEhUFktckKicSExP3
F0VsbGxZN0pCQsIFsFqt+1Wwanl2EhISEhISEhISEhISEhISEhISEhLuxv8D
Dk9dmg==
"], {{0, 25.}, {292., 0}}, {0, 255},
ColorFunction->RGBColor,
ImageResolution->{144., 144.},
SmoothingQuality->"High"],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->Automatic,
ImageSizeRaw->{292., 25.},
PlotRange->{{0, 292.}, {0, 25.}}]\)
Out[12]=

The solutions are then ranked by the ratio of the desired-to-leading-order error field harmonic magnitudes.

Specifying fewer field harmonics to be nulled results in a solution contour of higher dimensionality. Use three saddle primitives to null only one field harmonic, and the solution contour is a 2D surface embedded in a 3D space:

In[13]:=
InterpretationBox[FrameBox[TagBox[TooltipBox[PaneBox[GridBox[List[List[GraphicsBox[List[Thickness[0.0025`], List[FaceForm[List[RGBColor[0.9607843137254902`, 0.5058823529411764`, 0.19607843137254902`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]], List[List[0, 2, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3], List[0, 1, 0], List[1, 3, 3]]], List[List[List[205.`, 22.863691329956055`], List[205.`, 212.31669425964355`], List[246.01799774169922`, 235.99870109558105`], List[369.0710144042969`, 307.0436840057373`], List[369.0710144042969`, 117.59068870544434`], List[205.`, 22.863691329956055`]], List[List[30.928985595703125`, 307.0436840057373`], List[153.98200225830078`, 235.99870109558105`], List[195.`, 212.31669425964355`], List[195.`, 22.863691329956055`], List[30.928985595703125`, 117.59068870544434`], List[30.928985595703125`, 307.0436840057373`]], List[List[200.`, 410.42970085144043`], List[364.0710144042969`, 315.7036876678467`], List[241.01799774169922`, 244.65868949890137`], List[200.`, 220.97669792175293`], List[158.98200225830078`, 244.65868949890137`], List[35.928985595703125`, 315.7036876678467`], List[200.`, 410.42970085144043`]], List[List[376.5710144042969`, 320.03370475769043`], List[202.5`, 420.53370475769043`], List[200.95300006866455`, 421.42667961120605`], List[199.04699993133545`, 421.42667961120605`], List[197.5`, 420.53370475769043`], List[23.428985595703125`, 320.03370475769043`], List[21.882003784179688`, 319.1406993865967`], List[20.928985595703125`, 317.4896984100342`], List[20.928985595703125`, 315.7036876678467`], List[20.928985595703125`, 114.70369529724121`], List[20.928985595703125`, 112.91769218444824`], List[21.882003784179688`, 111.26669120788574`], List[23.428985595703125`, 110.37369346618652`], List[197.5`, 9.87369155883789`], List[198.27300024032593`, 9.426692008972168`], List[199.13700008392334`, 9.203690528869629`], List[200.`, 9.203690528869629`], List[200.86299991607666`, 9.203690528869629`], List[201.72699999809265`, 9.426692008972168`], List[202.5`, 9.87369155883789`], List[376.5710144042969`, 110.37369346618652`], List[378.1179962158203`, 111.26669120788574`], List[379.0710144042969`, 112.91769218444824`], List[379.0710144042969`, 114.70369529724121`], List[379.0710144042969`, 315.7036876678467`], List[379.0710144042969`, 317.4896984100342`], List[378.1179962158203`, 319.1406993865967`], List[376.5710144042969`, 320.03370475769043`]]]]], List[FaceForm[List[RGBColor[0.5529411764705883`, 0.6745098039215687`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[44.92900085449219`, 282.59088134765625`], List[181.00001525878906`, 204.0298843383789`], List[181.00001525878906`, 46.90887451171875`], List[44.92900085449219`, 125.46986389160156`], List[44.92900085449219`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6627450980392157`, 0.803921568627451`, 0.5686274509803921`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[355.0710144042969`, 282.59088134765625`], List[355.0710144042969`, 125.46986389160156`], List[219.`, 46.90887451171875`], List[219.`, 204.0298843383789`], List[355.0710144042969`, 282.59088134765625`]]]]], List[FaceForm[List[RGBColor[0.6901960784313725`, 0.5882352941176471`, 0.8117647058823529`], Opacity[1.`]]], FilledCurveBox[List[List[List[0, 2, 0], List[0, 1, 0], List[0, 1, 0], List[0, 1, 0]]], List[List[List[200.`, 394.0606994628906`], List[336.0710144042969`, 315.4997024536133`], List[200.`, 236.93968200683594`], List[63.928985595703125`, 315.4997024536133`], List[200.`, 394.0606994628906`]]]]]], List[Rule[BaselinePosition, Scaled[0.15`]], Rule[ImageSize, 10], Rule[ImageSize, 15]]], StyleBox[RowBox[List["FindSaddleCoil", " "]], Rule[ShowAutoStyles, False], Rule[ShowStringCharacters, False], Rule[FontSize, Times[0.9`, Inherited]], Rule[FontColor, GrayLevel[0.1`]]]]], Rule[GridBoxSpacings, List[Rule["Columns", List[List[0.25`]]]]]], Rule[Alignment, List[Left, Baseline]], Rule[BaselinePosition, Baseline], Rule[FrameMargins, List[List[3, 0], List[0, 0]]], Rule[BaseStyle, List[Rule[LineSpacing, List[0, 0]], Rule[LineBreakWithin, False]]]], RowBox[List["PacletSymbol", "[", RowBox[List["\"NoahH/CreateCoil\"", ",", "\"NoahH`CreateCoil`FindSaddleCoil\""]], "]"]], Rule[TooltipStyle, List[Rule[ShowAutoStyles, True], Rule[ShowStringCharacters, True]]]], Function[Annotation[Slot[1], Style[Defer[PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindSaddleCoil"]], Rule[ShowStringCharacters, True]], "Tooltip"]]], Rule[Background, RGBColor[0.968`, 0.976`, 0.984`]], Rule[BaselinePosition, Baseline], Rule[DefaultBaseStyle, List[]], Rule[FrameMargins, List[List[0, 0], List[1, 1]]], Rule[FrameStyle, RGBColor[0.831`, 0.847`, 0.85`]], Rule[RoundingRadius, 4]], PacletSymbol["NoahH/CreateCoil", "NoahH`CreateCoil`FindSaddleCoil"], Rule[Selectable, False], Rule[SelectWithContents, True], Rule[BoxID, "PacletSymbolBox"]][{1, -1, 2}, {1, 1}, 1, {.1, 2}, "PrintSteps" -> True, "NulledHarmonics" -> {{3, 1}}, "LeadingErrorHarmonic" -> {5, 1}];
In[14]:=
\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztXQlUVEfW1piYGGeyzWRmMjPnzPknHs/MmMkxdjIJRCfqmLgQUVR0FFwQ
jaJxX0CNQWPclbgQ12gcFXcTFfcdlwhuuCAKCIiAigoiNraaaP6PvnIt3tav
oZsl1HeuHLteVb269bruV7ferer/6z6gzSdPValSZchz+NMmILjR4MEBI9q+
hA++/YcE9erfs0fz/kN79uo5+L3u1ZBYD/+aIX/B/3+WkJCQkJCQkJAol3jw
4EF+Udy7d6+sGyUhIeEa5Kvw6NGjsm6UhIR7ERAQUKUo6tWrV9aNkpCQcAFi
YmKqqHDkyJGybpeEhHvRtWtXxdf+rbfeKutGSUhIuADR0dFqXjt8+HBZt0tC
wr0gXqtevXpYIVasWFHWjZKQkHABsrKyeFz7+flJXpOoJCBee+mll0zmz7Na
069cTUhOOZeQGHchQYoUKWUoGIYYjBiSGJjGI3fNmjWS1yQqCczz2r3795PT
0sp8IEuRIkVTMDwxSPXGr+Q1icoDk7x2x5ofn5iEsYO/mdeu5+ZZ8233bfd/
lCJFShkKhiEGI4YkD08MVc0hLHlNovLADK9hEkijJvVyuqQzKVJcK2AlSAkr
wcDE8CRq0/TaJK9JVB6Y4TVafsSouXvvQZkbASlSfmHiEl6DYHgStWHAqkdx
KfDa7du3t27dir9uqr/8oPJoWkHhkNfyrFaaBEpPTYoUd4ireM1m99poaUU9
kN3Na9u3b3/uuYIDvPB3165d7rhFOUEF0vT48eMdtPDw4cOybpp74ZDX0q9c
xTBx1biTIkWKQlzIa1RbsXnt0aNHcEM22nHjxg2nLEmzZs14i5yPj49TZUuO
/fv3bywKME5cXFxubq7L71WBNMVV9QZG4McffyzlZquRnp5u8B3Lz8/ftGkT
64ivZWJiovlmO+S1hOQUDJPcPGuZD38pZSjbtu+4cjWrzJtR4WTv/qjsW7eN
87iW1zBUi81r9+7dY9O3Z88ekzaE8Omnn3LZwMBAp8oa4NKlS4PtWL9+vUG2
P//5z5oGvGrVqi1atNi9e7er2vNzhdJ027ZtpcNrCxYsQMuHDh16Xz8iF8DV
qVOnNm7c+JVXXqGW1KxZs1GjRpGRkYrj3eBpqptdvXr1OnXqLFmyxGF7HPIa
7VMrz4uQF5NT90cdjI45Vmp3jDpwCHdMz7xa5rqXgly/mdN/wECLxbJ12w63
3uhmTu7GyM2zw7+eM3feseMnK2jPH/4hGi1MvXTZZn/h1bx58969g/Ksdw2K
uJbXMFTLhNdSU1O9vb1hpvA3OTnZqbIG2LBhA7Wnb9++Btn0rD3b/LVr17qq
SRVL04eFEDnO5bxWt25dqtnABYNfWbt2bb2WgxbFzJq8xmjYsKFxzzvkNdoa
ozeIzsVf2Lxlq55s2bYdQzs37878BQuXLlvuJksSOmYsrK5PmzalY7guZ2Ra
7ICCJa/N3Z1TQsm6cbNTJz8o++GHH55PSHTfjaIOHsItLIUAtSHx+MnYadOn
nzuf4I6ed4fk5Oa9/fbbaOGyiBWU0vOTT/Bx2PBgg5gr1/IapEx4zU0IDw93
ytr7+vrOmTMHpcaMGdOmTZtnnnmG0p9//vnMzMxSa3Yx4G5Nd+zY4T5e++1v
f+uQ16AX5Xn66acxTAICAvD3qaee4lZt2bKFM4u8FhwcPHLkyNatW7/88suc
iLIGbwlLyGujRn1m0cf777+P4bz+u+/pI8yUO4xJly5dUPnQYcNKx3ZhNk7q
xF9wzs5jIn37Tj5ETHR355RQevTsiba18PK6mHLJfXdJTUvHBIz6wde3/YiR
ow4dPoJ03Bcpffr0Neh5dCe61Hr3Xpn3lc1OxNTCw0eiKSUhKfm9995DCmmk
KRWU12Abc3RgvBiVlZWFNqxevXr9+vWJiYkG1slmsw0aNIjaExgYqLiL+Msj
bO1nzZol1nDo0CE2+OvWrVPf4qeffoqPj0djYPbRMJdompeXh0v4yykJCQkR
EREHDhzQe99XCpo6y2vZ2dl79+5dsWLF6dOnHzx4oJcNVYHLuOakpCSx5aK+
qKRx48YghfPnz3Pi0aNHueyAAQM4XeS1y5cvU+K1a9datWrF6XPnztVrVQl5
rWPHThizDRs28vP3V8vIUaNs9qk4cVzm1WsutyTgzfoNGvAMvxRk0eIluN27
774Li+pUQaawW7fvcKJbO6eEArcIbfvXv/4Ve+qMW280O/zrx47Y1m1ietdu
3ZA4bXqYQc8T93GespVVq9eSIteu3+TE8K/nIAVkrVeqgvLalClTquhg6dKl
mkVg0Nq2bStO0avY/Yt27drBeHK29PR0JFatWlWvfsK8efO4iJ61B/AFpkuY
84vpYDSo8Ktf/Uqss27dujExMSXRFHaeWv7Pf/7z0aNHEydO/NOf/iQqK74e
Kh1NCeZ5DUTfoEEDsQHPPvss6gT5itn69OnDTKqHP/zhD2IRTAPUP5PE9/Ly
8uJETV772U6Or7/+OqW/8sorepOikvAaJskeHh4Ys1OnTTceaJcuZ2TduOnU
2DQpKZfSyJJs37mrdGzXZ5+Nxu3at+/gbMEpU6ehYPPmzUutc0oiIN9mzZqh
wd8sWuzue9FS5387dlSkg7/g7xj0/M2cXHr6a9d9V+Y9Bvly/ARasxUTLyan
ItHT0xOt1SxVQXlt0qRJetZs2bJl6vyXLl2CldMrAtu+atUqygk7ZmwtCSat
PZvNIUOGcGJ+fv4777yjWS1oNywsrNiagjLoUo0aNby9vTVLwWiXmqYMk7y2
fPny6tWrazajdu3a169f55zdu3d32HIFr6kBr5B5X2y2Hq8B6HO+lJqaqllt
SXgNNoesyvrvNxR7DMJ2nTufkK0z5Ely86xnz8VrejS79+yjNiReTHZ4r9y8
O/EXEo2jDvJt90E0cfHn9cLYyAiHhIxwVtPevYNQsO+n/UzmRwPQM6mXLpvZ
Dg+lYD8NcprRXZSZs2YTCzvrljr7lNFm2Hzca978BcaVqHv+6LET9PRPxp7W
LHIj+9b5hESHKuDLA1H0Hj4mJF68mnXDoCDyoFc5T7duAWhMr169xTyY/sHH
RPqmyC2alVRQXtu7d+8nRcFlNXlt+PDhdBXEMXny5AMHDmzdunXq1Klvv/02
EtE/vKaXk5PDdf7+97+nUv/4xz8Ut4uKiuLK9aw9HCL2yCIiIji9X79+3Np/
//vfEyZMGDp06O9+9ztKgRsSGxtbPE2Z11hZPH0/Pz/YWE7s2LFjqWnKMMNr
mHv8+te/pjz4z4ABA/CkYAS4IDxrzrxu3TpqHvwsztClSxex5ehVzRvBWc7M
zFy8eDGUpYIvvvhiRkYGZzDgtZSUFL60c+dOzfpLwmvbtu8gqxJ7+qzeEANN
NG7cGIZrecRKSgEbenh4QqKPHuvb91P8BzXgu92//wBYIeUtduzE/Bz+Nd2o
hZfXzl17xAwLFn6DdFRiHLF5+Eg02RzCf5o0iVixUlEE1m92+NeNGjXibEF9
+ijoEkWowbgvpcBXhXYdOnRQVPXBBx8gfcXKVaAbTzu4WvwfT1+zc0hOxJ6i
eAMC8iz531KFRqNGfYaWjBn7Bcp6eX1MOdF4PJRi6K6QyxmZ9FaI4x9Ecaiy
yaecdSNb3TMtWrSgq4u/XYKPH330kWbPj/48FFepkbRYio+Y5NgK6WbR4iXQ
GnNy+nqEjhmbk5vHrS1snsf/li4jtxTgiRMmUehejmNp1ar1wUM/KDohNS0d
/mOTJo/z+LRpEx1zjJbEJ0+ZqsiMq0ifv2ChZm9XUF5Tg4O3NXkNj5J5RHFp
8+bNMFaadeL7QKVMRlOwtQdloNo33niD+YUj6MBZvPTXo0cPXstKS0v74x//
SOkgo+JpKvIaqAFtoHSbzcb+VJ06dUpHUxFmeM3Hx4dbHhcXx+mjRo3istu2
bVOUEt+Rmdn2iFmEYukVzBgfHy/mMeA1NL5atWp0ac6cOZq3KAmvfT1nLhkr
+AJ6Q4wWYYA9e/fbirIhvt6WooChEMt+HhrKl8TMh3+I5jyYvSMFM3mDYY47
UpQaGUCuR3QQYAlHjBxF6chM66tA27ZtRe1Ac5TOJhSTc3yE6RbvCB+Bsu2L
OrB3f5RFBYpyUXcOJPbUmQZ280h2nosonOJ2vr7qaqnx4ssdM7qrhd4TwfKL
rwJZHKps8imDvtXt79K1K12lx9HJz0+z5/39O6vLcjzJF+O+pBRYp/fff5/+
L7pR3DwGKJL8NfiVPLfhaBZA3Ehy/WYOvhhin4tVqRdFaaPE+AkTNHvbDK/t
FVBBeS04OJgrR+9BETPRC85a+yr2d1jPPvtslaKALeXMYARKrFmz5s2bN8V6
Zs6cyeyQn699grSxpiKvKX7LcsaMGcwapaOpCDO8xnrhYYnp+GK89tprdCkk
JERRylleCw0NFRuM3pg0aZK16A8tGfAawJ7p+PHjNW9REl4bPGQoRqu3dyuD
IbZj524a7LSjx1b4Gp0s3oaNmzBpx+TZ17e93ZB68JIRLzENHjzkYsol2Jyo
A4fISIoGCt5cgakc/bleA1AhlYKvd+jwEXw8diKWSsHocXTiuC/H0+3QvJs5
uRBM+MlB+OKLcVzb9p27FOpgFmopiFso8oZxy7btlC0tPZNSjkQfpZRTZ84a
dA4sMxnVNm3aguCgNfqBghLr16+flJzCSjFJDRs2HHWCgJYsXUYpHH1hUne1
DBla8GRhjTWvmlHZ5FO2FUSDfEuJiphG+IPik1X3vK0wXBM+oFgQDUMiPLVv
l/wPN4Is/GYRlcUcQ/ElhIeF/2OmRCuZ6GFy0/z8/WlfA757rX18kAIm5V4N
DOxBdDY97CvwILRbtjyCeQ18regxeJdIHzhoUGXmtevXr7/55puiQXvhhRfa
tWsXERFx584dvTqLYe0VAHnB3RAzBwQE0CWMKUU9586d44LR0dHF0FTktcjI
SPHSypUrKf3pp58uHU1FOOQ1uKucQb2T3dfXly41a9ZMcclZXoN36e/v37x5
czGiplatWklJSZzHgNdyc3P5ErpU8xYl4TUa7x988MHw4BCFfLdhI+WZO28+
8sAB4VLEhjB34jsRTHHJJvArmAULv8F3vlu3AHFxEhbMImxVg4WhNxeLv12i
N8Y59FpcoNu4KZISz8TFi6QDA6g2RwWtKnzXNmfuPDKGNLeHQaMM67/7XixI
AX7oGU5ZuWo1WULRA1J3DhlqEAc8Ak7k2JhZs8Mp5Vz8BUqBU8MrimgSLUiy
X2BGd7WAX8hPWbNuvfqqSZVNPmXIyFEFflnHjp3E2vBkaY2Rn6yi50loGfCr
GTM5BTREt+CFYhLqGQ6bpOahNkwbxGzUmKZNm4mv1eBNi18D/jhx0mSxbGjo
GEoXFzxJ+vTpi/QePXpqdngl4TUA/DVu3Ljf/OY3CoP86quvhoeHaxZx1tq/
/vrrDeyA2QwKCgoLC1NbWkxdKPPHH3+suAT3jVul8LZMamrAa/wIXMJrZjQV
4ZDX8MXgDCdOnFBc5VNWateurbjkLK8xHj16FBUVxRrBPHK0pAGvnTp1yqCd
hGLzWm6elV5eaALODmWDN2ERFpcgrVu3RspYwQmyFYaUAzCbBgN2woSJFvv7
DvoI74ZKwZXTK5KecYXaCZvGHgG4ADYKThmlTJ1WMMNHwxQBBtFHj1H9vLls
6LBhojoxx45TBsUUHT4mEgMCuj9p+cRJSGnp7S1mU3QOuIy8MJ4VsNDrNl7B
2xS5he6riAOh9zjMa2Z0VwuzIW+IFsWkyuafcof//hcpo0Z9JubkVU1+soqe
t9n3jFMe+IOcSN4fiEnxKGlNm4N2qHlfjPtSzEOvCJFOrwhZMq9eoxvRfgco
hf+DKBX8RS5/y5Yt1Z1GPrLCr3xSf6XhNQKMKtwB2Mm//OUvIrtNmzZNnZmt
fe/evQ3qNIgSVCMwMJAye3p6Ki6dPXuW2wNzrVeDW3nNhZqKcMhr6enpnEEd
j9G2bVu6hHYqLom8du3aNada9bP9xEsunpiYSIkGvDZgwAC+JG4SFFFsXjt9
Jo4GO4wt3ByFcHg2vYYYM/YLW1E2VAQk0Ks6TO/FxAsJSV+On+Dv3xn+C/wy
TODpRQbbh81btz027xlXDIb5p/36UbYWXl6w+dExxxSRb2Tlpod9pSjIYeQb
IzdTSps2RdRZvebxfiVF8KTabH7Sq5fasik6h9gK/aOOGyRCB7vRxxkzZ1ns
USIKs0y0KAaZONRdLeRFWop6VSxmVDb/lMGt5JfxRIiEVzX5ySp63ibMOsSl
3c6du9AtwIAkXbt1g5Bn1zsoSGyeIlxnX9QBqrCdr69Y1s/fn3kNvUfLsOrg
kIDu3S06i7e0tgxu1exwPV7bawKaFZZzXmNgcr5r165atWpRqb/+9a/qPF26
dKGr3t7eBlU5Ze35ZI/nnnvu6tWr4qXJkyfTpWrVqt29e1evBnfwmjs0FSHS
h16UDh8bMnDgQDHdarXCp6ZL6s1xYoDiyZMn9Rrw008/aQa0XLx4kYvz7yPo
8Roy8ytFDCu9exWb177fsIkGu8GxG3nWu2Rply2PsBVlQz6QgUQ9GwfLWApR
v359TIPJGQHCvppBeWjtq2HDRnoNIIEdQ06OnSPDxTGcyamPV/k4FISFL9Hm
uNt38hXqTJ48pYAyCkP4Cm93h/g3YsUTs0nGUFwxU3fOZ6M/t+jEwND6GO/w
ojiEwMAeYh5N79VYd02hUJyGDRtqXjWjsvmnjKkL5aRoExbFk1X3vK0wuEUM
W+I1Uj0MDw4Rm/dDdIx400l21QyA2Ro3WB0cQou3M2fNVqSj8VREb7W8kvDa
woULfXx8zpw5o0gPCQmhUjVr1lSXGj16NF818AWcsvZwynhveIcOHfgwjfj4
eLbe6ldvJjUtNq+5Q1MR4uszvXCL9u3bU4YaNWrw60VMP8RtEepXb+hA7k+9
wH5gzJgxzzzzzNixY8XTS/D/zp07U1lUkpOTQ+lqXkPOiIgIPkoLEw9xL78C
xea1adPDLI6O3Th7Lv6xfSuMYPxuw0ZKEWP2bIWeS+iYsfRx3frHL2IGDxka
F3+eEm9k36JEXqYbOGgQPnYPDDSw0k+sx9VrsEX0ho7sNi3iYbZPKerX/StW
rrLYHSh623ImTqnO4y1pRSMDucIj0UcV9lZcMVN3DpwRi2r3k82+ckjBDDC8
lPLxxwVvi+DEidnYx7mckWlSd00J6tMHeRRh/CxmVDb5lG1aATYkgwYNFp+s
uudthTQkLu1yfOmChd+AKNVCoSB6zaMoSsyg9kcd1JSCwJvjJ6nssRNFzj2D
X0npkZuVm9S48fxNVj6dcslrsJ+1tXDs2DG94gbWHnRGv1lWtWpVLy8v2HDY
qA0bNsDWwYRSqaZNm6rrFF/6vPbaa3AWYM9RHN/h+fPnczZnrT3ML1dbt27d
YcOGBQYGvvDCC5QCj0CMcndK02Lzmps0ZTx8+JC3yEFBfM/hlHl6egYFBXGe
jIwM3meH5wUXErMO5OGG+fn5aVbOmziq2H+7Z6odPXr0qFevHr0yA09xcD68
QnwHgoODMT0Wz3sR/S+R1zw8POrUqaM42wRUa6BssXkNls3i6NiNjZGbaUTz
W3hiQ8WBDOoFNNqB6+/fWVw043UnPtbJ27uVRT982mbfh3Xm7DnFgb279uwV
p9xPAiFUu8t7BxXY8E969XqsTmHEBasDo2pRLUmx2eRTRDi2E56CQefQAiA4
S7FUyLYUPWCz79emjytXrxGzUYwfr/KZ0V1T6PQqvWBIMyqbfMo2rQAbklat
WotPVt3ztkKGFdvJ68ZLli4z+FpS83hnHAut7oJ8DcoySYGRxXT4yJR+Lv6C
ogjctILbNW2qV2f55DU9iHuEFTCw9vv27fvb3/5mUC1s3YULFzSrxYjQLCKu
1zlr7W22glBhzWphPw0OHnSoabF5zU2aipgzZ466cugivm5bt27d888/r9mM
N998k/0pBeDcMW0pQCuTdACmwYlhisNMDM7zBxWGh4erz+MSUWxeo92sISNG
GhiBr2bMRJ4mTZ7YNwoMU7gk6gW0hg0L3kcMGx7MeW7fyR8wcCBlo/f1t24/
XvtauWq1XgMoiA7ZxODwlEtpVHDV6rWUQouEPXoWCVfjl3dcv1odeukjvjfJ
zbPSqzTRjlEcoH3F7MnP2KlrY3ZgR89mPyKe9mqhkcR3HNcRc+y42GDFKp9J
3dVC29O+HK89WzCjssmnbCv0y8QAG5uwqmnQ87bCkyFnCEu7EHJs4XIWrdC6
es1aXlig5oEWFaphnkAtVCyto5/Zl0fbKI84m7LevUedD+JWL1/Q7EixN1OU
8hM3cv/+fYdnFR45ckSvOB+TpbkOCX9h5cqVDRo0ePHFF8UK4Rd069YtIUGj
zQSwLdwrxXQdvhVKcR4OQTFv7WEYwV/swlSxr4OB7M6ePeuwrIGm4AhelHOW
19ykKQOPICwsjBxnAh43xpri/P+UlBR4UmgkZ3v55ZcnTpxovN8Q1Pb3v/9d
8W154403xIkQpjcgDt4KR3j11VfHjRunYMzY2FgxD7q0Vq1a4PcRI0bonZ0l
oni8dv1mDo1uRTS1Qvr1728R/B1bIRsqZvvqxSja6AR2271nHyzJ4SPR3QMD
KQ+frwivTdO8i8KRAMODQ+hE+oTEi1TVu+++y8tQRAEW+1mIN7Jv4Y6bIrfQ
Oyl44hwgQTEYormmEDgM1djTZ2HQTsaeJgtvKQxRIKFlVXx/aCOeXudcuXad
zHLnzl1IqcSLyeQXv/POO/zjLGvWradbKI5nebzKFzrGKd3VEhwSgjz4q3nV
jMomn7Kt0ONGnWJO1Ew5yT/V7HkIGByJoz8PRZdyr86aHU5lFy1eguYh/dSZ
s3Q697Bhww2aB8nOyaUJFXqSegzf80WLvwVbeXh4cHQKhaY0atSIliIvJCRR
LKjF/u5SUWfWjWza4693iJatPPFaqSEjI2PXrl3QJTk52eCseBGw+ZjD7969
+8CBA0lJSS78pRVYdfRJTEyMwUbs0oT7NCXAdTp16tTmzZuhskFYPpoBV+vg
wYNpaWnmK8eT3b59O1oOYsrOztbLlpWVBQVBeenp6caeV/FQPF7jJUHxoAy1
0Ix6cuFbIWZDxSIYLaCJ27iWLltu0QFvXuPj8dWnb7HArBF9EMhqETj4xGZ/
gUU7bS32o/X5sJFOfn5i5Qp1bMLGaov9wAqxneJZ0LwBDdT2nyZN9GqzFR7v
T2jcuDGX+n7Dkxdz9F5JcX6yepXPpO5qmThpskX/CBeHKpt/yuxxiwE24pPl
TXyafUVbJyx2mubIRjwvPgnE09OT4vapu2iFUK95JHBj+fAQOMj8/ylTp/E+
Qf65HIs9oknsAYpLEYXPeTM4Z7IS8pqEhFtRPF7juA5xjUshHAbG23v53CRF
hEbIiJEWu2ckEg18KDabsE7z5i8gT4GD22fY16bUx+MrBMZz5qzZ4oFU8BHU
h/+nZ1zhdU6L/bgP0Ie4zYrVEe0huAMcwUd/oJ0Lv1lEcXGKbcsU0GgpPJ5F
3TksqJ9PJoTZhKsCKhEzkAeniNxISk6hIrC6zuquEFoOFQlIFIcqm3/KHDmj
+K1zerLwqgx63mZ365isN26K5HS4XSEhI/j4rCZNPoSnxvsFuHl6RyXv3rOP
vEiLfV3Rz99fvWaL2/H5YOio2eFf00tJxelkmGw0bVrgGxr/iJLkNQkJ16KE
v7/mVoFBOxMXn5B40cyB9sYCoky8mAybpvdbISSYzMPcXbqc4VTluXl3UApO
mXE2VAt1jH+5gMR69x54CnW65Cx9k7qzpGdeJYtt8JNwJlV2t+AbcvpMHCZX
6mOc0YfgzYvJqcWrGe4VekzzeEzu1bj488ZfTgoEauntbXBkma08nXssIfHL
QHnmNSllJRSpYvzyVIqxgHDJq927z2it3iZ5TULC1ZC8JkUtFLXu4eGZnFrG
HlkFFXiyLVu2tOifdSyK5DUJCddC8poUTaHodMVbPClmJCEpmUIuA7p3N7Ps
LHlNQsK1cMhr5xISMUyMf4ZSyi9Psm5kd/Lza+3jU+YtqXBCUVUhISMMXs+J
4lpeK3jxJ3lNonLDIa8lJKdgmIgbiqVUErmRfUv9O9FSHEp6xhXFcZfG4lpe
w1CVvCZRyeGQ19KvXMUwce06iRQpUtwkGKqS1yQqORzyWp61YPoXn5gklyKl
SCnngkGKoSp5TaKSwyGvAclpaRgpqZfTS76PTIoUKW4SDE8MUgzVZK2DjySv
SVQemOG1e/cfTwIxaqTXJkVKORQMTCI1DFUMWPUolrwmUXlghteAO9Z8ojb8
zbx2PTfPKglOipQyFwxDDEYMSR6eGKqaQ1jymkTlAfFajRo1DhZC/YO2BEwC
aUFSihQp5VAwPBWeWn5+Po/r0NBQyWsSlQTEayLeeustg/x5Vmv6lasJySm0
r02KFCllKBiGGIwYkhiY6tEaHR1dRQXJaxK/eDjLaxISEhUFktckKicSExP3
F0VsbGxZN0pCQsIFsFqt+1Wwanl2EhISEhISEhISEhISEhISEhISEhLuxv8D
Dk9dmg==
"], {{0, 25.}, {292., 0}}, {0, 255},
ColorFunction->RGBColor,
ImageResolution->{144., 144.},
SmoothingQuality->"High"],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->Automatic,
ImageSizeRaw->{292., 25.},
PlotRange->{{0, 292.}, {0, 25.}}]\)
Out[14]=

Although the interpolation algorithm works for arbitrary solution contour and search space dimensions, it is currently only optimised for a 1D solution contour (the default and most useful case).

Publisher

Noah Hardwicke

Compatibility

Wolfram Language Version 13.0

Version History

  • 1.1.2 – 25 September 2023
  • 1.1.1 – 19 September 2023
  • 1.1 – 19 September 2023
  • 1.0.2 – 28 June 2023
  • 1.0.1 – 28 June 2023
  • 1.0.0 – 28 June 2023

License Information

Creative Commons Attribution Non Commercial 3.0 Unported

Paclet Source

Source Metadata