Inception V1 Trained on Places365 Data

Identify the scene type of an image

Released in 2016 by the MIT Computer Science and Artificial Intelligence Laboratory as a pre-trained model for the launch of the Places365 dataset (a subset of the Places2 dataset). The model is based on the Inception V1 architecture.

Number of layers: 147 | Parameter count: 6,347,677 | Trained size: 26 MB |

Training Set Information

Performance

Examples

Resource retrieval

Get the pre-trained net:

In[1]:=
NetModel["Inception V1 Trained on Places365 Data"]
Out[1]=

Basic usage

Find the type of scene of an image:

In[2]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/a817913b-3304-441e-bd4b-ebb82688778d"]
Out[2]=

Obtain the probabilities of the most likely scenes:

In[3]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/00abde0b-d496-4d15-8a30-29e8852cda39"]
Out[3]=

Net information

Inspect the number of parameters of all arrays in the net:

In[4]:=
NetInformation[
 NetModel["Inception V1 Trained on Places365 Data"], \
"ArraysElementCounts"]
Out[4]=

Obtain the total number of parameters:

In[5]:=
NetInformation[
 NetModel["Inception V1 Trained on Places365 Data"], \
"ArraysTotalElementCount"]
Out[5]=

Obtain the layer type counts:

In[6]:=
NetInformation[
 NetModel["Inception V1 Trained on Places365 Data"], \
"LayerTypeCounts"]
Out[6]=

Display the summary graphic:

In[7]:=
NetInformation[
 NetModel["Inception V1 Trained on Places365 Data"], "SummaryGraphic"]
Out[7]=

Export to MXNet

Export the net into a format that can be opened in MXNet:

In[8]:=
jsonPath = Export[FileNameJoin[{$TemporaryDirectory, "net.json"}], NetModel["Inception V1 Trained on Places365 Data"], "MXNet"]
Out[8]=

Export also creates a net.params file containing parameters:

In[9]:=
paramPath = FileNameJoin[{DirectoryName[jsonPath], "net.params"}]
Out[9]=

Get the size of the parameter file:

In[10]:=
FileByteCount[paramPath]
Out[10]=

The size is similar to the byte count of the resource object:

In[11]:=
ResourceObject["Inception V1 Trained on Places365 Data"]["ByteCount"]
Out[11]=

Represent the MXNet net as a graph:

In[12]:=
Import[jsonPath, {"MXNet", "NodeGraphPlot"}]
Out[12]=

Requirements

Wolfram Language 11.1 (March 2017) or above

Resource History

Reference