ColorNet Image Colorization Trained on Places Data

Colorize a grayscale image

Released in 2016, this net automatically colorizes a grayscale image, exploiting a combination of local and global image features. Local features are extracted in a fully convolutional fashion, while the extraction of global features was developed leveraging the labels of the Places dataset during training.

Number of layers: 62 | Parameter count: 45,505,890 | Trained size: 182 MB |

Training Set Information

Examples

Resource retrieval

Get the pre-trained net:

In[1]:=
NetModel["ColorNet Image Colorization Trained on Places Data"]
Out[1]=

Evaluation function

This net takes a grayscale image as input and outputs the A and B channels in the LAB color space. It needs an evaluation function to merge its output with the luminance of the input:

In[2]:=
netevaluation[img_Image] := Image[Prepend[
   ArrayResample[
    NetModel["ColorNet Image Colorization Trained on Places Data"][
     img], Prepend[Reverse@ImageDimensions@img, 2]], ImageData[ColorSeparate[img, "L"]]], Interleaving -> False, ColorSpace -> "LAB"]

Basic usage

Colorize a grayscale image using the evaluation function:

In[3]:=
netevaluation[\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJwsuWeMI2l65ynspwNuIZ00PdPd5U1WVnrvDclMeu+9C3oGvffemySZZNKl
YXpvKl1VZfmu6mpT7WbaTI+6NT2jWUkn7WmxOuD27j5fLnAfIoAAXiDwvO8T
/+f3Q9yWGmnK//RXf/VX1v/l8kaTOKcsFomb/r9dPjANVlBlUMixBptCpbCM
SP/nsr/8/xfJENUPjEGm4YP9HzUGJ8b6+3uakFwOvQdJJYggWDQXP0xovf7+
7aGOmx0oQh8cEBAHnGDcNt4P5w1cpXGRrHGTlSZM5AHJA9dPdaITLxR65g9C
kYOzUlbjkOkfHSQqdh4chjYLWEw6TY/n2g3cRN6hImoVNj5BSEcb6KD5IzoG
x5VEPt8NB5FCSHjTv1fIRklCKhWoOzFivVrH955/P7OaWo06g1G9xq1z2ucj
DLYzLJKBpuBa4uBs40WqYP9oH4i9qW9998cX89+8Ofrtb9cf9mcWEJPoQSQL
nzAv1SVDfV3No3HmEHysm4wc7+hpcToHoddvvn/91q0P73Ri4WiuljDkvZAP
DA0/iA5CJhYx40hmQOBhu8iB+kn1xbzNzGMFS9zAzsuLYDhts2f3nEp7VkIg
UpQsNpPMEUpcYpbA7nBnAa1ezCLJaAT8FKu+giFjBNrig9mLhIJEl+49+cY5
7+LxiRgM22ACgg6zNReuZncev6rnUi6NIeZRF+YcKk81ILJrzO6se+lg//Fy
Zv/rOSD95KOn7z7bOD/7en3pk5XHKrGEOwzpg4u6ICksn9V751cftmFNVihp
nAWBjnTgnb09+L6b7/3qb9771a2rLQMDA6MjOLG+u31YU/RDxoaY6GmOkYsJ
0gT+BCFQt2+I7TK5TuOILkZCmc2ixlzN/u5sTmsUAaAMQ6GJGFSmgqXk6/NO
q5qGFjPQejXNbIQ4fytAEwBp7sv5p1E3hcDZefK7YtJUwfPpGEkgZ3Ln9GB2
+eHxo62ZRCPoUaV9PkUkRjLMSO02o0GE3VvJri18PWefe+lTprbevvzl29lH
H//76eKbk7eUCQkOPjGhQBNH0RV0z72mO63NiAmdZYLU24nqa+0m3rg5OXX1
vV/99d+9f/XO/bYgo7tlQtHf3D04Pgrt7B/EEClEqVgBeLYdZqbtcc0pYdFF
SqXflA67oxtaazLjW36+zbZzGVmnXMKkKHVSGtEABsNJuwjgMRgAJWjlhGGU
TdE0SSorfFH4uq4A9Jx87ndVPbMkojPidZVY4QjqMxuxmXC5knRmskvZRa8r
5FJnwlZ9POKVqWTmWmDxcGtjz5O3q7O7H7/5y7vij7/89CL/9E//Fq4DAwQo
mdciBmAE5ui13vbOfsG0z8jr50zf6r/+a6pstH+s8/5fv/83H9y8dl+Xh3UM
DYPYiVYEZIQ/3InqHB1FSiRBNVHLHQ839j6Ja3hOCV2qdvmdFd+ez2lIgExT
2O7gsGxegZtA4/FdCZNCETHJpEKVli6SwIVMSpGEzGgQVJHNvqZbyYn0yumQ
+9EhVp5lU0m6oousLGQipUQ0YN7YWfK5RN5yKOQ0RbVWvdcltQd5sx5jPX20
bYnnk/szSu/u6+P/erz0+8Wf/nj+yV/+5dUDLoOBwFopULtxanK8d2Tw5m0a
1Zu3BPWsK1NtLcOgBDraM9V++9fNV97roOD6hzs6iOMQpNo0ChnsE3E7BnEg
QcZAMrkAVfjJ74CMycPjS7mAwqUyb6cCzmQivFvfcJGQbD/HocKQiBClx+Mr
W61agZXBTrqQky6TRInw0zEUicKdMAJ5A4oq4HHDBmlMgdYJZeaIQ5NeKnhC
dk18SRuPCCR+tn4uKwmC1bihHJsrVfSOBXmqtqpZzc+fzarcz16c/7z3emP7
3Q/v3v3Hc+86L81dRolX+v3akSYGODx6j1ObppkS58TB9uu3/7arQ269PYns
b2vuuNZNGh0UQsb64NN0kzlnG7rVxcR1jI1P9MEodJw8EVavfqtYSRCFfCVO
iLem4/5Fn7+UqP/x21WRkEAS6XROs1fHYpIN9WeuRMDnrajcfrnPCMqLUD4b
SQLYSbM64HPMWUwcqRrvFLEtBgffpzRJPCurlajD6UvNrwnMXpPBFLAZE3G/
3upf3t8uxXeOXVrzrt9Vd50WFP4/PDv/buP4y1+ef3b09smjxUj3ONaO4kNl
SANJAONBB+8z1jIAlSzv728av908hei3DVlt/beaurpvtbROIHoRvQwcHT0+
LobCp7vv3Whu623tGIUyfbzZt5byjxU7jk2UqdT64ubS9qlF7Xb99rSe5stZ
qKiEY9staU0hN1s577Rr0qefPgdUG+GP3bwgWktHkACLyWc1cBePOOa6TmDG
SGVGOaCXUHWB0uJ62uu1pcBAQGgCvZlsIODxFc6CVkt+dtEhtc2Vhd6nJ8vf
1C5C8vBv9199uvb58S//8c3r3+4/fKGtgpOTJL7APQuaI1w6dayna3PV4nBA
OoY7IaPT01qV+LbaMN58vfn6lZYu6FBvf3t/570bffjRtrZx9HtXbt5onRgZ
owg1EKPzy/zqucdPFBplTGPE/2DubdEWCVsXt1IyBpnCkxklbJnE6UiACqM7
EJyzypZjNO9CI+IW0hhcKFYOysoRuDFhtO1W7VIqA0MRaKn0KSLdX5jP67Xh
uFmn5PiV+pmoPZUIRBKBGYfWny+V/IG9kjKdOj5d8+X8ivznF6/L9Xd//8W/
/OOfXtSOF1GPWL1UEwU06fu5+qieNHDnvjPpc2S4ZLSzv5+KZhJH2YSbtyeu
vH+zpaurub3z/s1bnXdbaGDbcMf9a7/+8L3W1tHJkSkans7DJv7yfP3HCpnr
VkjBs53UR18vuRPJObXZKWCS+QqUfc6iUrgcwczZDk/oy+jUZpeZGliqr1Fp
VDaazhdbZ8pUy97K5gsbj4WJMXRsrpCsBNjRrTWHCQw7QSPPGU0ABlsy4Ja6
Yo6ETGxx7oKq2eyiMB6rWhqNJamm/Hb1dPHg0z+//flf/rRy+EfUAA8Bs8LH
EYOtUZ/9BY0I+7DZaQfZWM4Y2aLomexqu4XHwkaS2vfaW5rb73M7Wm42t49A
b1ztuHev7Qpi4FfN3QMt9/uGkFI0RWZxflt3rCspcoU9vlqbfffdQTqRih44
Q5eBwxQpCRa9WGSImny+5U1AYmgcWsRGuOjiH76gEzgUFEfBlu2pLRLvx09n
TA44QCORJFwOm8mwp+fcWqFMplOjQaVZNmPVuEGLXG3WpqRChc5o8puVUn44
v1B9ePJYY00unj5Kf/vy5S+/PDt/9Kc/UGF++igUiRjogil0jgU1mnm3FQOn
6TlGHHSiRuXTWfDpacmkbLCjY+hWU2/J2XnzWvsEpa216YO//bALg+2729Lb
dLN9egoPMkEzwMt6tEo9WuqIndeOPvnyvN7QxX7+XOWUKERMDk8rFFj9aquz
sOUNGESszBxVYGAnvz6dwdN4CL5emI8o1jz11xX594eOiM+mp/HJPCqVYa0G
ZBJAzqMwMua6UWcXGXSAyOFUuWU2TcKfquT9GVb1y2dfnj58HHUGTk8frn/1
uy/+6z+/23zzw0VvXySHkKEHOvoGJYRJYUoxcr+1dMiBkbHdU/S4TAbDktje
JQik6c797qGOWzzy3938zfUWUkfTvc6r1weaLlu0b6Qd1tc5NsbTaviVuOfx
Ac3G4xjSB/sfPb4IFL6JZMpPLyxCVfrBTNXC5INmlZMSrGldWp2GxTeKQRb7
7FkGRuAgaDK7zZEP779YVpU+/qJsSCp4PBYTSqeZTRaekStgk8g6bdhniLvc
FiOosMoTEZp5rjI3W9hb2JQtni//tLS563PWnrzdevuX7958+a/HX//7N48x
44ChCzXYPTncr6JOoQfC5Jv9F7+XoEYZrH7iKh1EynI6lUyPcHe33h2439LT
cftax/07E+1Xb7bdmOxqev/u7fZ7t1p62hngwLTcnvRwzx4HOBqxM2Qr7mxn
bclGwPnp6btNJU+Vr8ijgDijtWm9onDIb1SIxFIuHWngl47dJCgVy1RZZRvV
8voP4fDHXz5KmvkCIUeCEer5BjAKRtRessAe9mqj+kQkGHfYvPOK+JxQk9uJ
W0vHc0XL4db5D5u1PXO4/vhp6ff/+Mk3vzzZ+POfP/77jj5B+93mq91Q2HAM
CxlCWpz3+sD6KmnYJIZGN2DqaenMJettHqYnu3ubm+9e6+rqHiP++sZtRPuV
q23XiMCNls47nU0d3XzVAMqVK5VyTE0KzwZFgDDutq2rXXEvGD/KJN00XTjg
APUqg9WiXfdknDo5oPTHiExa9kKxs0FEkElTCq05uXZWXzGcHH32p6o3mHUY
DFKuTYX1eXUqAVoDJnwOiURE1IUUHmWkWC6zQDC2UA42tpYD1uP959++cq66
grHHHy//9MdPfv/T7st/+PEP38DgzInm0b5WPhlDYSHI9D5gsFcciXMnhPCR
3XmGb3rClmcHty+WCS0tHR232to7O7qGBrs/QEy2tLXe6Bi+fe29K803Wu83
46YYIBrhcZHZLKpIRgGk6rhRZ5DJAVH2E2dGyVW4DoIMBZ0eN/A05oTVEpbJ
MvJU3UM5X3dv4vF4TL9aXkutbcxJDy4qqz9+ptYtBc0yYBrJNjC9TheFYQWl
ZreHgyGF7YAjM78aLaQ0+kKsVmrsJ+dcb3ZODz7bahiSa+enS3/4/RffPzr8
4vuvfjrp60dM9TV1d44M20J96BE0RDfeg5XJRyAoDm/nIcQBwyoNFN5HD4yj
7TdvN13v6mz9zx2Macqdq82tvU2dY5NNH/71zbvNPROT7WwMV4NJKBQSsjnM
N0nlfBuZBNplYtC6qi2GGNDL8+DouYI5L6Ls8ebdVonI4Hm4vZC2xTQNLAOH
HRdTncvbStXc2klt+ZMdmcLsVpn0GLzyAWjUsTRUvHIrKmJozJEoX6l1BPi6
6LnbnLburR8/nk+rjp+evVy5OPFllw/rW9//tz/+dvvtV9/+07v1ybbhidZ2
OBFFRjNhOG4fXTIwNgUhdvVOeO2GhxQtiiyQIEyeszip49bV3uv3m6+yoNjR
+50f3Pz1tSsdTRMtPb/BjzX1QlAjGAQXkAXFOCbZmOdodFqPRoVn8TUqgyqa
+VRN4XsdrriNKfJ7hYteS0rBYmqyiWAicfx1jGim0ZFoEoeun/FT5cuz54ci
jYkv5ciFVqVWiNrxG0RkGZPEcZd9KpXaETCKNGG3hKt5lQNT2c3K/kxRagin
Z84frj3y2tbOyxd//PmXt09//uTFtz9+JaVdAqRuqI/u/g2gHB2fouLGBkcm
ezpYMQv55GzCikRzxFQbNxttGWq+ea9pqPdqLST2tbeO9EJG2ppv999rb+lr
vnq7sx+GxJEgIjLLvPUwFQAlCpY6YVsy8WbiQE7mL/N5YGTPvmThsUGr0Aio
lDgSX3rgjsQb+59+UmezqWgMDcPLWngJhVIZ3pvnY+kwGhtPortrXKMfpFBZ
BICFt5/NG+OhxZDdUw7zSeBRxjYbi7ytVCs+dboU2Tu+eOhOH+4VPvn+px8O
/vzLu1dfff9zdINOnkbjxvo5LYD7fjtEie8fmOiGIFnUfUa+zogAY0i6gABL
VkrQu2237nX3D3Pp7fLhlrtdfGTbjZHWD9rb+5tut3R3dU/DSUIA0Kff/cmq
l4apZINFHzRIBXq6ieeKsYW+Wj6dCQAMoCYlUrgKJl3nMGss1mxj9/njLJMC
QxEgJr84WitCqYYHWwkcwJ6GEjAiu3ZmBxEPkskkrthoe+zyLvvXfGC04tLS
2A9KzsxB+mhxNugx1ar7DzKn6/bc/lbtt98+P7n46tXhn754+tWrTQ9vRAB2
dUPGWzh9aIamr3d0pI8Bv6X6yy5zkjXZzOTYKQjV+cM3qLbeO7ea+0YGEDfb
P/jbG30jE03vX+u6e6Wze7j33jC6bQKKw0xBl597DtImMGYy6ZQCOkroVypV
oDJ1GYJPwiG3mk0kkmgyhDmqlejgfKrY5V1ZyD5dorGn4FgEwbZhfV3DBXeP
y0obVixWk9EKoigo8X+0xqaouHJPURWbVTq84VQ6lvUyLTslQ/2H19HtRwVN
tFF9ttp4venMHmyt//6Xl0dfPfl57c23P3+aq2j1/fSpweGBPlJQPu5Qeob7
kQhmH3Txp22daLiEIdOHhHL3mVpP7em62TQ+ihzqHGgavfOrG8NDd6/evt92
q+VWS39TG1kLDl3uDougTFtTGndZJlHoaTK51iYBogarQ+cxxENJK5+GM0mo
DrXXLlEqpAICSus/nfOdXVgpWDSeisgdZJ9uba+HTjej6zpNKoxiKC15SuDx
2ZbCjFNLuDaxVq5/pU1lY7l6QOvJp+21kx8Lb7O5iDnd2Nh6dHpii+3Mb335
Xf78zUf7h88vPnv0UA5LDXQ1YQbYBpaQznbKYt19U+P0CfHS2SMHDlaXTsa9
JBFHLDQj+3qvtDZ1t3T3do72N13t6rvzwejEALz/9q3rHf0EbfW7KJ7m0OJs
2oBVFX7M5Iq1Vi/IUVHE5hmXz+tQOkppK09KMquEcoqshqU4tVQyXpZWmwLp
z8pwFgmKA/KVwuuPd/eyheJXFWdMiSCJSTZQ4TQVtGqhiAfB2SNJ58xyIuV1
OctHa8ZsQ1e8eBJ+Xd2sO1bOdzfnnq1a8se5w292X7758tM/fbPx6JNPPqpw
OX3YUdikuyxI65EMi3f47rSYJRgyhtL0CcgbVl+kIFKyYX3x6aG2Ox0t/RjS
3aYr17uvt/bfv9p6r72v5cadG/fHcYSZ+SU9DAjgxcyyRR586xZZZUqNPhiy
BIv1b51WUH9U0fPoLJ4su+C0NtQKqZXFR+KpJqfNX5gxUskcxLRy8bB48Spb
WY/X1uZ8SwkBBUPgEwGeRJSXWwEMYI6pfJc07QzbC5mZ7771Z1Ph2lZg9dnj
n+fsaz//88PFjyuO+QfZi6Oz//j3717/5afjj//f7wqPFwxozRCcoU/GVpJE
YTUL7e4iU1gojpQjRRGCOgbAZJvtpEk2t6fpflfLGLv7yo07H/zm+q+vvHd3
Yni4q6n91s3bMEQHYcUbAEhonkrzNCGMFWQcg4YMel2+oJ/36r/MuAJgMKOQ
8EkK3VrdJFwWg36AoVOASqnGQVVYw2I0Akb0PnpWfJTNVqpL+dqhf2tFQZcz
JkgsnURZqnl54vyi3WUO2U2Z+XIhVt19bPQmIrW0NbH/xU87tv13/+eb8g+r
juqDbCr/3Y+vvvnkH//88Rf/+H3ss/kZNBXCoWc2SicBtWXNP9TXRJ3iSIQm
LQPG2Y4JeTB9CkezCoRDva2dTX3Y8TsdrLaB5jsdHZ2d7b0t9/tv3mvvuEdh
1YHxuShVUSnNh+S2R242nkFjCeTOharvUcUtNOuZerNORuRIqym0mu81g15Q
pJaJLv2O49koi3HTGFlo8yh3uLJfnktFDxuJxw+1eKUnQ0Axp6TmjAjgAVGf
O7jot6UXir61tYOToM5mnY0pio3d1+uJ/Zf/9u+bG1l3dc3t29k8XHl58tPv
vvr+hzePvvzMg5H6AzhgrxpWedn5I1r38K1+HJbHaulE5mI1voqCqzBVTK1p
5LK+3jY5vnMK0tLXN3Lr7u2hjjstXb3tTYMjExC23yWS6Sq/34wGHd5KWE8B
SQwxURja1OtkijCJJbV6vOaMTCCMBwwevNkaj1gNci4H7ZQblc8vpNhxJmBc
Ofed7m8VcxqtN1VaCYI8m8OkB/ACxOyGWCjX2EB12v2ykXYno/sbz/6vBXsM
LMUSb1zPviz5Tr58/dXZYcaz0PDnjkMXz0+3P3v13ePPz/5p9SI9pa/OG2nB
hj/gqoGnil5o3wgwSJZMjBJXLveIFBNH45IBnGCiu7VtCCPC0KZGW9r72jvu
tnS2NF25fbejtXUMCYNadqoTRMJMxR3Ua0xsLUUvZCpJ3jOHMaV7/ZTD1nrM
PGLgwMQOZ3wbMluwqmSK1AQ2XeRPROxOARTNZOoXzhKV+tESaMpuLnj8n4eA
GTXdwJP5k0kPja5cEPBNmfKLzVIhWarMfPpT0R6R5xbDZfvZq3L4f/w/v7x7
+izsTizldjdy37w5efb511tbb97mzxO5IWuy4XbwzAlH4JV+ATvcNyZWAkFG
N4oTeFNEcqUAgtEn5o5Pd7W1DyN5JhN0+BJfmifHBnru9V4dah9ubxsfHcPR
JXEZ6KztpU0aHpdjFqu1YolQZlT6aaqzPZnQ4HZpxDarQJkuWgTZPJmhBgNG
uZYj0JisJAUHh2MKQqViLpmrbBRW1mNRm/PrdMBmEKkYKn40UQrak8myIaaw
bjx5dOTx7dWPjkq6CFhd82wfbr5YD/70r//ww/mKHczNhWdWnnxy9u73L/Zf
ry2vO94dXUxt7s35fduUqCp4GDCrRsYxJBrGiGXyhY2LVA8SOtE1QXWJiZDL
+oagjnN8a/ON7ql7I4PdaDi0s+9GW1frZNsYsV/owGdcCldUS8XzrS6GXs5G
slB4tS6U+21MC/jy89lNJQOkZGtKp9VLkgFsg5zJUDAwKAadLyKgaaLErMVi
mNvYfvZg3epZ3ZSwQK1H6jLMS/3rHr7fkqo5pPJ8Zembs6L/063l/5gzxFyr
x+snz5//OB/77s//9vVG0aNZSSSfujYe7D7fefnp1zvV6sLP/3yM0c3F/Ilj
jQT01U49xlEkgQYl0WEaDjWdleOsXBwfQUfAmGM9bR2DMLIjJbhHgMOJ2Ftt
4ol7NzuaYP3NHV0QLEHsA3U836LWE0IQqQLxZe5S8NOiZHxhLqLmWE38YNKj
ZANqIKQJBHQKKcgieyl8KprMxIFOAQHLJGktLkZkcWvrPB/2O3JpAlvJf+Lm
68wLhxL9jFOslopNhuLp6adn5UBpdessbYpZCktrP/3p5Pm8b/WnH39/4va6
Av4HD22fZudWVrY/u1jd2lr83z/eQ1QO9Mp6KqXBK3YXktwpiBbkoPlcs0pp
jg/z+ZjRQUiAPk2Y7O9o752C9Jr7KRxWr4g00TFKv9VxhzjZMnKvAw6h01WM
s0WBn+ctUrECiRIn5PAZfK41yLcZzBKm6NK6H4WZfKXIEjLaAyyVmmZTUdAM
tZgF6st0DAGj8MfSlEh9ZukwsLuU8pENRpnBb6OJE6sAeV0Hcii6EE9gfvT1
wV6+6A38sFYyRE3zD7b+xz/Nb1c9Xz747pd1n8/rju6V1a+WVKFE7ovt4srq
ydOtEHVl/TOLz50okmwHB+dcyBRHJptmBrw8Kl1A7pqaAkCc0uhhdnXfbx3A
sNvGnYVeJBwmR4xNEieGP2xtbR0Z6uwfI5C1mtJZRR7VMNhct0oMko06gEjj
BNTSYNaJE4UypXmrzYKViY0irloiF+lrAbFCwAS4xkyNiiCQ5OatvEDhNs0/
q54e+K0UjUtpUTKJ0s1Z1spnWra3ZLH401tvPz2rlbJnpuc7GU/aMLu289mX
52chzx9ffv561aLX++dKycB2fs676k+lfMW0tvHmiPOotm7S5Lw1I2dxfkU3
BmVYjVy6GjGFh8hcU1CsQQeD0ALsrrutncPQkAZtQkugeLmEShuYhA/1dA10
9vR19Q1PI+GARUoKKElOFE4Sp2jEeBuJ4ArgxCa3RCfRgZYlm0oTslA5iZjf
r3BnaGqZ32nAsoU8q//yQ8XxXMtWAV2q80TCZqWJbAg75E6h2GKuOvRRkYTt
KeilsyeNh18UGtrK1xXbxaY5q8o8mj9/9+3X6eyPnxydLllUBnthoaR/+Sht
2UnWskGfu/rNRQn7djniVm2W3N4QIuRjo8doDvI43EBmjSN1YPfgpErJI6JI
lvHWzs6haR9+hOcFGYyJUSaEyrjs2bvd3ZeOPDgCZ0xPz2kYVXuQATXX0gpz
nK8nO1UOmm+WqZMLCk7rjE3KV9lIobzJZ3J4sgILR5sHgywqEY+h4PBIWTCl
U1P9tsNEGMtkqCMOrSrkLdv5HqJHTrUH5aGt3eP91c8/qsRZpcMz94P/ZslY
YpsvX5xffF+O/99HtcW9JOhPBr3xxf1qyu0orOyYA8Xcn154cevFQhjcji2W
98PTGgVmlFpW4ACxE0ZCjOmQYxgOCY2CUT3DPV1dQ9PhoCIYotMDjM7eQYqe
devurT7o6BAGNUrXkvRrZwUqyIKjQKXXFlKZlHwKipkVChU6Ld5sr+SVgFTA
EOwszGq1VaOYa3DZZmssHJ0iJCMReKTIUUmY5XsLnmBDIaEnA1WaNC64HKKI
cSaJodMY9e5qdbmwvb91XMot1lZOXxljJsuDvca7P3w14//mPLsUs0l1Ca8t
utnwZGzhxeKMOVvebqwmCfuLq25FbSZVWMxxxsOofhTNpMk/kE5ZtAwZC8bq
miXDEsV0T3tbV9+kcefwy7WQkDrFpGKwo2zEeA8WQ4bjBTQcDUInRwtipyrA
Qyis6ozfrcs6TTydkqpmgnS6ecfmUvNZAOAOBmY8YoHdlgnNlothglCHJmBg
CBzHWcsqUlsvKjNeCyy8Yk4RARYGLgF5oFYm5wAWscodjWXSpZlvd5eWE9v/
FFeF9NaZxdK3P7xOJP/+xWLZqZZKA253Jla2u/Sx2TlDMbPaCG3X8eulYBzc
2jSaUitpP3FkcFAatC6wGXYZh0Cd6rBRc6VwkKsZ6OzqGYab9utzqzKmVgSL
I8aaMMNNrRgIhThOF+FpXDhFoXHo+Ewyc7Yut1gtcx5TTCdRkGRMDpfIjahB
hYzJMoZCsiAolHlEYLocLKRAk3cKj5pGoxhut8Ua2/qqbHbxGbmUzmgSIzQW
kWx7JW/iYbA6tUAx+zAUXJiZczWeFXe+jYPOyOxCau3Tl+c+798/ryXcCoO+
EDHmwiGV06G3y3zVtVrZfXY27QnKXcrYcsRfMwTPGfd7eqiKtBo5wYWqaaPk
Tj5d6FKoYqxbPT0Do0ibam1lRYDNRue3xhGQa61DwyMIBs5CGsJBWQQEjdGY
vVARJFqP1si3RQMeC1eioZJVesy01LKl11BxLIbWpA1x6HK6ijJT9CdiUiJX
KCZgp0h4tSPsSMbXajL2mMUOUDUGUIJjS2wzCemMQCKRAhbPweZuel4bL2de
VhY3y+ZMtJLPvnyy9ixh+d1vV+N6GWA2hGfnjmo5s8WTDn4757SUbR/HURE5
YAcNJev2RliqitLb2lEmkKbwkTGAjE+eHOg1JNTS+Pitrp6+yenww6c/v9qY
u4i+zsmoY509/f0AATKFxYFYrXTaCZKDErFQwKQQ3T6LT2XwZFl8gZKntxLI
KvWGG2DR5UyVhqUH5GQmh+3ZWfObTWSSkjE5CiWiGViVvrhWTS3w4Zq8RwA6
QAZdaAslYxoaT2SQGsLB7eVaKhBc3A3XsjPpF27A4M/89Lr+4suw5vzRxs6M
SGTwKhKl3bo9evrOsv46Hk19tPUuiVC6nWAE1FhP52bnAgFHy+Q4SewPnBgx
fEecA7ExlJau4bFft/b33Ljbr3jz08MvTg4/sr1MTYzAhwchg4OoiX4qjU+L
VuQ6NaCwCaxSJlhTzSh1XrHWLBDQaVwYnUjACIRRGlsMcnUJgpaIZfEvB3ww
YlQn3Ky4jQWBElFERsqXOcompAyj0cDhaTSgRMxl6fj+MDCunRUmFjyl9Vo5
tL1Tczn82tyqTuRyvfrvr5fOHvqM6/uFOY9SF0slAll3OVKuhkSJg7ll/6eZ
CxfUn/ZpC0qZKr+bd6az4m4UiyLkJJ86AcfG28CE3WOZvDIIv8SUztahO/DY
i/nfPV3Yse06u/pGpkf6JqcgODyOiDPITj8Nqn02PkfMUIoBvcdn5HLVNKGA
j2XQYFPTMEnQIiVLJCoeETnJlIsUNLn6+DxsMniBhI0uoeHRzErCFNqerzEB
m5KHkyiUJj5VCQeSnmW/ASdX52aD9Y2N3VIpteAKuoxL+xXQEHr1ZP/vPz9Q
mauLGzXTZYP7ZudN9gV1hOXI5JYcMxu/lJfSA4ZQxBmSSZVgIeVwp+13yXK0
aH65ISNodSn3uJSkodxqGsGM9Uy0QyepppffVZ4Vj7cNPAljDD+E04ziUXjC
NKDl1EoKfX6dTNUJhXxNPGqyW8VqBpvFpxKkKBRNKw/mhFSG3ijDocRCUG7T
qYXlPyzubU6zllxsNZIIBw4idrszayNlgwyBEhBTaFKNV55dN0X1Flvct5yI
JtYXTs6zzoI7FVvbeb4Eem07b09/fLsote+n6js2rfuy9vlobM+rDieDR5fp
kvt0xaWE6d0eb0zB8Phmw0mPK9YB1U9IP39olDAku6xRwiiKTWdea+9DjPZB
JqDu85NZvUO4Phf28Vkw2Mj4NGxsjESc5GrkIj7TolD5mFQxKOEKdGovlysW
cDl4HEGGxMjUAqLJwaJLjaBexFHKeSW3omJ4E3343FE5lWIJKAqGeZR3udcS
eFXFQqK4ZcMwwKL3emsGk5tOcjqdW6liuFSa29qIu7OLs5HqSs6QtB99fP7o
ZFVaPVwMlMyuRNa8dugvOPTJdCK+NPfw5cvnT80GotsRl5oBQqxaDATCsdhA
l4aieuH1UDiE9Mwyhs7GMmeQv7k7iBichMHsb7eLyGn75gx3xoIZHh7CoNkE
Cp00Thrla4houU3jzzG4TApPIgWFJASVZgzQ0FSzksAwSDEKGZmgNOtkDGlC
F3QrgluZSObkLLz0yAwl4C7XLufMulmQ5JwXIKcEFJVc6LYZgxEuDTkkdBvM
gWTILnYm6+vOYjKXXVyNnZjSmZU3588Pt4z508fejNFoz4RPX4bzh6VVezG4
Wt18+OKnJ7U5etJqVMcAiTO1kdZEQMX0CJNjPUs/YHFDa8tOHE0NMX+U7L3b
OQDpn5rSfH9s11LYbrdMo4bAIN0YMg4YJcioMgIFEDAZov/5p11MxQn4FIOS
LoTisRQSmWV18FB6DlzLYTLlGrWBw2YqtWymZ3HGll5fc5RX/Gjc1CgVoasq
zCBeEhOT+ZihQMHAjC7EhICDwsOZrVqpPqh3G0oLtYPleDlUWd89PXCGo/Nv
t16/OHWUv1lfS8qM7sLCUikbyRWjGnfj0m53DrIXT0IIjlfDi5vlfl+jWAqq
7PA+Klk4txIVu5Spf30CYQpJ6Y8WjPfudQ2Pj6D5X3/sNqFIWIlVxBkc6MYG
ESw/FaPmq+USjoPOMFJ1UimRRqKQpTwBkYdRMVh0n9ipI0KIpqyPTqUzRHoA
xhSZ+ACXbqieWkvh2PLxLAk63gnFY5waqwKnlNIn8Hi6RKtgquxKV1Bn8wqy
cU/UkPIU54rm3aWlYHwpVnyy+dAd9c1/dL55/tJZ+eTL3ZjCUqys+qPBqDOx
ni6/yXv3U7XlX5IilK7gdJn5Yr9cF8hHTRlmJ2Ch2dd0JJ57/f/YZzBYJO+y
e5be29E7NjpNfLhldUn5BBpTSYJNtbk8ojjAEZIYZIyLDwgpeBpewSXQyVK8
hKLHjNK4SBwgI4sANAFCfpAVwslGKdtl4Oq9PBJOGt7dC9oDkZPDGcJ4Ty+e
QlVLzVgDYXgaCiHTHC69OJX2BVWCld2AJeh06JzJxQdFk6oy7w/Pxgpb63s+
e7L0w2ePnp0bPVv/fcerMRXyVUcyuLdoXqgVsvFANHteeeJLEbQGmynAkTMt
m9bSgswjaR51UgwRFpkWePfVMlvkYBuN/OXUYGf36Pg0vvAsTnUiiJIcmcSb
QjlRxRCeIMGR4FB9JEkiMul0kVTLphPQRFVRgJjqh6KmMUwWHU/hTajmeWQy
j8vV+VSVVZPTogm+XKiF1NG53SR3BDJ5uUcAT8bzXgooSiaxaJ0yWdFptar0
83sJjdsbtilS6UbKbVjamS9nAodvlmsFUzx68OnR8QNL/OL1osVoz26cxM9q
jbS9nNbG5VbPzN7mrs8LY1l8+LQSyuM6zdvHxlnxIBYQ4ARkHkMhl5noNLnA
Ek2BNtb9lrEpCMr7LjSKRShy4alhOE5mQIVFKoGKCZgkhlGGxM+bVgvENJWC
hKPYhCImgoAkokaRRAEdogsPO/UylkSp48hjlZq9uGcPporZJWNsP1CUj43A
4EgKmU4F7CIUQcoF/Ji4XOzSRFLm7FnVBJqi8ZxLn1popOrn64XGXHlxL1OZ
1yVimx/PbG6ZZvO5lFEXqeZ8sZVcYSdYqQZMMorPt7S24tdeto8uHsWJXQa7
W58wA8AElimjsAgCkvFVshnKEDDogixLPj/a0js+MSJWyUpk1AQ5AB8Z7WfB
h4RprFZBiTe4Ee6okuZl0/lmgEthSnRhgoLjYSFE9GkoRSRGKjxSioDO0RnD
bqEp8FgVPLbF/GrP/gotVjRL6NAhOHSIoQf4ZDQbrRTLBLysQZ7Re8LWVDUF
OqKJ8FLGX1nbXgo21lLl+djuA//eNhhMrr9c3Fw21xqPslpt9jgejc7nc08v
vc+u8Ds83qQ7X7Kr9Vwe6JGQ7Sn9Ei/uAnEjE2K2iCWAC8FFhwWCYnitPr4g
qRvqauvpnYCjuTrZcP+wZgQCQQuR5lpOp/M6fbM+6DCxBCidQrlcZ5Cx5RpN
PSrTwYhTGCISiudgdZWKmkikq3T5Os+3+I3ScRw0eILC3IpcM1/wU8Y6Ifhx
Mksro+EoOEXYp/Ar+FKP1GFzRxMeQ+ZNMuLNmtc/2awWHanV4kZoYb2yVLfb
43uPayurzsiTHY/e2NjJbBxexBrruoU4YHTO7kYaNIaC0TNGUuCZFrLV5eHb
fMqIYqyTImeTMWiRTVHnY/lYpTTGhlj35D1tbT2To8NjTRMotB4JaR7CQynF
AEerkknZdXCMiuNwcUwmRQBYsyKqhC6gkHlQNB4jcUsYdIh8Y8nKo+JEGntF
lKke+sX5g+Wl8KzXUcrmwywybHIcP4KkyrEkq0yiD2adMxq21BB3aC8TRq+4
hJPNVZ8psTJzdFRfX0mvzKYWlgMzQSB4WefyvCP1blNuchXWovWTnxeSW/HG
vHN2ezeZnWVyuUyhFI8epGk9cbkDSzZEtOTRe0MeaQ+Jjnd8s82mjhIZZByR
6T53dN/v7B9q6hi8CxFJSaN4zChsRJR9npth8hSi5IxaysAxKBQOmcxk22w4
PYdKYTNgZBKebioK0FiMulrl4YQOQOVUxfKrhlTh0Xl8oZ53OJ18ERKPnRqC
onEcNNqux6sooJPnnr+EHTeHaqvajWtFm2txKWME7UuHe+vlte3ZZOz52txi
BTBllx4dJA2Lz+oGS7jUaDhPPs/XH2YLtRdeX0MbcXJzl85GGJvoGO6nS4g6
Fd6jklGgfcMC3vAEG0Z2Vv5IQorGjTQuRvmoMNzRMTrePtB+ZwwCG6EQx5gI
mCS8ad7gAjK9zMeiyuhEyhQPSyXj5RqDAIFEoYCAQQCXSLlcNpHJTsdZJAog
Ay1q/4zPHNh4/Ty/Ui4XMgqG5LJzIQgEFoHiqZRENcSksQXtWgYtFlnNlTwK
/xfzryPB6tyC3Flxzh8cztZKsfmH8/NHaxpVtP5kvW6sfuw1WNLz5yulzO8S
tYomulAuK+XB1KIQh5BOQUkj4yQEGq5HjQkBOJQFGxtgiqBoODtV+eYTds+0
1mItiN2J1ERHc9tAW/dtAoAlMYji8WmMsmxJFmaFbjGDx0QTUUOjwyNYHIFN
JovxNAERS9IuJMJ2D1T62IIW0KV8NpfKkga0RrdF7bOuPXq5sTSTz6ezMR1q
CoVhk0kkpkrIVs/ps3q1rpBiK+IrwdkY2b6Z2vgqm25Ul6uB7d3qWmEhm4gt
pPZrz88jYlfx04t1e+2pwepeeHtezpb2w1mPzhFOlwTefCYpGMHi4aMsSOfI
cH/XtDjFHUPgEaPdw1TKMA6LYIlPP1K2kcZHTAV3ddGH7Gy+PzB2v5s4RpWO
wzmwPjhGI6V95WepdDishoFkU+hYAkYoxIhFdCqSR4BPl9asapvc73AIMDQS
ScSg4EgCOS/qd+ptgcXG5mw5EU5uWBoJ7iR8Ck2gsgCiQRxhhEGLxP84yRNa
N12JWV9uNn10vHhaV2Yi9rXGy838TqhgX6nPehvnNaklefRiz1XKyEzRx0+f
LM1UlmwBk85rnPU61/LFqJRFio8PTXRfulw3A8BgqVY8bozeOUTDIyY4NETu
1QGrj8DgmuvgbMDqaGnt6RzquvJ37Xg1GUa7TATIVNj22RaNYwTRKizTIOLU
sAj2JcbwcVguiUEnh1J2imamsjCNnsJyeRgCnoPE0Flcg92i8KzsLh2kC6HU
qf+hg4aDoshUBpEmt6F1UqXCojEFldpwLenKVsTpze3Y073F9b1EIp2d2cwt
J7Izsw+WVy8enh4o5f7FxZonp9GYk89PTlaXqwlTynjJdnyR0R5K+qZpHMvk
cM/7ze2doxRyN1do0Cug6I5eNJnWKySBG2tGBALHAoRyurZU03f3NDe33r97
daKPSZhshsPJMhN/8Xc5gRKM2pWyZA4kgaIhJJbNxJPIGAlXzqdaKDAMS54n
9cNxYjcSPUHE4hE4nVXqtkqCa8Hvn5Z9qY2EfTFAnZpC0hgsIofHI/NAKc9i
gl/CeGzBn/WFHfUXxa2F1d21WmF1KRKKpIPx2Nzc3NK//PTyJCEyZhYjHjug
Na893n+xuFx0uuIcqUQoi1T1JeviJI810d/Schsx3D5EkBm4dHJAhOweHEaL
L6Wc5NNKROQhHEKLZmCdJwXaaOdEb9Pt4WYkDT0y2gcdFp+u63769kzBsSfc
/qVIRmwNCQA0h6gQ0jlwhpZIZ9DQbEy/xO3goKdkXhqKyBbyKGimUWE1B+Sr
nvPtbDXdsKa8NtYUjkDGwxnUiFJmFKspBquAQFOmI1shoTdSqAZt6XKhXM1f
aDThUigXjPod1cWHb45r63qZ3eC2m5Rg4Ghv52FuPjvj0fjKDrl3NWSUcYw9
mJGJ/q6Om13jUy1TDHwbTW3jTU90905b4KMDVC4QZ05B6XzhOCtuWpJOs/tb
b9y9dhszzpjq60BJSdj1Wfdvf3mk9ce88UZ5BmAKhVSb3SeQytlszqUMIoIN
LBnKVXOEWCyZl9SyhBoByIUzaa6qKzTrTJ1s1lZYnui61ixDEwiTKCKf73Mb
DGo+3FzMi1j6udrcjFqWXysFI4F8cbnmrziVkaq/aPOF3M6V1Y+2Vj73CwCt
3AKo9AuP62ub6flGPRpaqgvB+EpC43Mo7jff7hpsbe16/2rL1GAPCi0Vy4TQ
qZ77EOPYaB+NRREEkdMQCR5pkjKtE92o1g/fv327GUXTkSaHJjCEaSOYez47
l/JnwrGC1w/A8Sy+2s0A5GkvhMUxGulMntiMwjJJDNoghKxxyHh6Kl+Ix/Pd
PnNsxVTI7aytRm0bfj1Ax2IJaJqYw6UYQZ2DzpJo9E6CNlkzhnRuTSrjr2lX
k/ZcbGVGFj9spBUph3butHSwvvi6zuHotBaRxPr8uBRbKa6tLMfCF1WmGDAW
DFmLboTYje25fvXu3zT19+KVEhAQTknUtJ6uQQpm5BZdTe6njI8Mdk/QyEpc
B/Lu3cEb1+8PjrT1wybh1OExjJzJ9xYXXmTNarU7QLUl+G69a1ol1fiDIBUU
+5UuNobOIQxO4GmwiXGG3C1naRgsPsihhc32jC+6XC5VFxumoBVFIxJwZDqN
AVBtJh3XMRMRimVeotLfsEtyeQ07EipoErpUId9IaVJraxmnV2VvPNk92KjU
TixihUEuEQeWFxaKS7G57eW0/4k5kdOEk0prQt9JhsDHWiF9/aO9KAwLYDOQ
U316cKipbXKib3CINEaFD0KGWiBAG4YwPjXSMth07WZX262u/pb+niYons61
eisbeZPBpvevGDMyfpLvsKn06qQ2q5aTmUiVnilnYdEYHHqMQtL4zLZRjkSE
1zooZL86ZC8vFvJzu3OulFwQZGPhIjx+isOxOC0bRqffIovrSH53zQXq0hrZ
fH3eaXQdZlOFcMAVno17wt7q4fPa6vyzV1GnWUOiqXXJ7Y3q+mE0tbGSjyTt
x9VQrBbwJLZaJWLkYL9hrJs4gmDSpyexJNywiARpaxuebB6lCkepDGRvx+3O
foqVODE+1Nd24/aVO9337t5pGRsemxyDcdxqYIlN5oXUHG/RF7B4fGog7OFT
q37FjICuZqmNCgGGgqZc0gvdZ6cDTK5QPMFQaoQCUOlpOK2lYiUYyu+ZeUoE
hoInkWRKgthjNJidOvmsRWKbTasFKrc82CgfxrK+zU3XcsyX9Oaz3qV09vh4
Obd0/PizoNggk9qcxVq6sblcyi9uhN22cq5cZNsdoUX5fYyQMdbEZMMRvRNo
AqlzYmBaz0OP9dwiD4/gJ5r6WUpUb3vz6DjBT2QD8NHhuzfv948QOu60dvaJ
cAgOx5WiULxaudNujJk5KXt6WRZOinm8nFER0VJ8KBIAWCJB2QAeR6Sz8Fg6
jcIXCkQqo14qMqozQv3cLCgu0Vg8CoWKZRDgPJeMSFDo+VafSq7WqFWJiEtA
d+VWFjfWksWIpRzd97r98aQ/vB0r7NS3yvMr85txiUFtTRZXG7ml03K8trUc
VqbXitVAJOwA2bz2Djy8+zaLjULAhmETKB4cPQSnIUYmscLBcfTIFJyB6B4Z
6p7E8rBkqhSLnb5/vbm7Hz9ys31okNPTeRtG0WU5NB0bpOtzaVk0lV6zJBOS
yyltkUq4UAJVP6VvyAVGgwYKwRjVLBYCycJT5BR1UC3OyeT2TFjFi1hxLAyK
REBhLkmcNaXkC5lmmUejUGnZUl9UoVGW3NHlrdX4Qd1j8WRCqbhJH01uzc8v
nqzVN6oHHy/aTRK1a2N9+/ColndV93e8plpkpf7JQTasYDGv34ERhu6PcdF4
AoI01jp4s0/R2YPtgw3QUD29QywmRdzeCcMSVGA/kcKHkvvv3rjd2oOe7h4e
nYb19LahQJxjK8Gmimig3KAwrTW8tkd2OaBWAgaWUAInY+lsKY7D9i5RMDAB
UyzDTk3TeGIR1eeKaXVes1rJEPgCZjaFgEdgcCgKRUBRqM16J0dromTkai4o
p1PlM/pgaX25VK+nXY6Z/Fw5Zwvql3OF3aPZ+ae1i3/duXyvN9SoLO08eVwJ
PT+o6EKZnfXGTto7Xw0u3/7Nb4iYvv4pWmvf+FRP943rHSOd7V39nZ0Dgv52
mQdNRI8MTWlEcDh9QY1CTcM7r9++3w3DTCKmsVO93UMY/sxMoiyEY1m+ejHk
3HsYSj/zz+LxRIVYz9HbeVPU8VFq2BmrCAVoM0oC4IkMBt2ulgF6G1eh47Bo
LCqHI1MiKdhJ+DScT6cymHI+10DRucSgmosF+IJp0GsNzC/lk5VoMK4Jlcor
hZmQNRFbr2Sq6fndwpstMWgN5vaK1cPz48bMRiMFVheO5uqfr9bKsa3569d+
3TQ4AO8eutUyAEPABwcm7zf19CCZKOjYQJ9A3wRn4Il8vMdjYHk5YgiK33H9
ZnPnKAaBpdH7sfdG1RzsekonpGtk3OhpVHl4uhRaXJsVqGR0pQeNtyLpdKTQ
oEzuZMh0eiLGJ1GoBDLD4o9aLBp/TkWnSgA608aUkHjAMBSGYnBIFnVESeZx
zFEFTTxmErK5ZGl+q1Tdyntnretz1srmSa1eiLqDvka1sBTMr2x/2zBb9daZ
w0rq7HinXj7a8KRqy199dvZ46SgdO6lfud95u+vuey0ffninue3O9Zu3b918
//rdvv7eieneLhqC0Tk8OTEGYfeQsTYjZmJsou/q+7c6BuBEHIYhhgyqtTNq
94pRCBgCdu+WgZquOfkLR3WFQc2ShryKiAbgMawM09xZkE1gpQsWGpoMI0kA
X1wvEikTAY2EBkbMVgaOQySOIRG4aaWCHhCoDSJQw7BqSdMKCRXD0zrz0dxq
JuBJNtJF687mytuG9xKdIxlfIlWr7R8tarUa1/xxI751tJfYPNRHV+pH//rv
Z+uN85nlmuXqe+//6tq1W3c+/NX7t//z1ctcHOzpuHGz78bfXYO2vndvjA/t
uNtMFPExrGTS2oOj0gevvn+9uWscCcGRJVQ0qC2tJhZLUlEovbQ5I6yHlJHY
g4WGVmoMaNI6j4zI02s1VNFS1cNGEhwxFgODw9MNKkfQxhcq/B47yGbT8SiA
iSci0Eg4jkhRKEgwltrAMbMAPpNLwmJZEqnWmnMvNyyxjXz4KG87qzyaT7gN
qWjNnwlVqgdfLLMkanvhwUayeL4b3LIa1qq1t59/ddw4Xns4J7dOXHu/qbnp
1rVR2uDgjea2Dgalp7Opv/3W1btT95t7mv7XW3fbu24JnG46yxBFT0yiBq99
cK2pfRCBQbJ8chHPlixXo8sKDhirneiZobLEHpktB0QsKaAweJxcDChU6ghS
/YxWiBSpHDwUhohWZxkosQ+QgHZQLDfwKDwKVaGXTE8PQceReCoeEEv5MgFX
wsRI0IhJGJ5K0xdSjktRahSjM8v1eGy9ngqGLNZcPhV3R+devizyQa0mtry2
vri2lc/p6huZwrtHF0/zm6cPPDbLYOvtKx80XRkep3T1jaMQHb9uhk6/NwQZ
6OnDkVp6gNa/+82HNz7oxktICp0DRPYO9F5//8qtlu5hkUooFQLsZLBU304R
OWbXyqZyPmv3ly2rYo0EZGsExv+Pg/fsSjbf8nXP7t2ru2tV1RPNOSsqiDki
KFGUnHOSHA0giihiIkjOUZQg5vSkyrXW6t779Anf6bAOY/DifsEYTH7zP+d1
jZtxawzYFbpMJF1hLB+WFAQaQ8CDziOINB6ao62YkFSxs0MTqQjC5VmCDI1C
TmJHh6cwLI6QwyLvsNBkOIU5w+ETmDrN9tnVp+M969lh8spxGbOkg0aXS+s8
8oQcDm/u/lwnFW7unGTTl6m823WbfPKEcvGbzw7Hic8WVHQC+6sHe+qahida
hzvnCUgUAjLXPrcLAnRPdIyiRVsL0x31PRN/bYZwVmjYxVnWXGNtQ0sPaIK+
r1XIRCtHoX3feZqB3TqIhByfY9ZNN16qPhApXWfrFiUTTxOLZBYDe+/zo3Rl
kSQjcagItgS+RFWswGkE8eEWj00RUCQkpFCIxiGxUCRhmUwnC7jkDcEkjCys
sMAsXKE5iBw6ygeq7QN3/CL+cG/wnxvt4S2T6/TcGvB78p5V6arxaC976I+H
dcHicTG9nYyVipHMiSFnP5KhKgU0tNTXdUOnOpfnFtYQAEDb3ErvxOBA7/QS
1TKEXICRR9/88K53icIl4/kT9XWV+oZmCRo8T81X+dNb7nBOTTWdZsv+y12j
ncdInm9yt4NHpv1VOlZqFB8FVevBU7d5iWTZFcqQaOSGDLOBg9P1bCZ91cxg
Kyg4Al6pIiMwKDiqMmUZJD1ZRGOwybM4plSEYMlYpoA+bjGpLUZbPBC4eE2d
eRwHp6FVpz12VAql0qcqqWp9VyA7jaRNx5nc1XXIZHUG93ds6s30th4NXeit
rfRcbesUoq9llM/tgc2Od4xBpghT3TAJzajRTUAJogls83eNkzgyjDDQ1lLf
2gucR5GwTDyeHUkVjjfOhJx1kS8XKTmvzOY1Tzop8iaimjUhzWYj6yOhLb6B
vC+nkPd2NuRUiYqjYrPhbBWRKl6Si3m8ZcYSlrQtX5pbgGKpq5xVLAavp5JE
DDiSy6SvzCyxDtfXbPuewFl0K56zJG/Kr4+bR5GEZcvkS6bK15floJLBXVtf
U9sUFpXx7Pn2MeC0igMXLhNHp+WvC4mk1vam2up3Nc2jgG4Yv6LYAm1NGxw9
joJirTqSwDEGAfcszi+NQWv/0jU3UtXc0tjYAZwiK/GEkSWhyrJ74z/iSbcN
UqvOnwx7160e9x5Jv2taN6zqQ5sn8vMrr9ckfdRSmQLurpJEY7HV2opW6pgM
pda8qhaoeOJlVsjNHEOQKYwVGozMxx2s4eQcOZlBo61tEiT2TYPbELKfaTc8
B95zX/j27njHkXYaVfup0PlvX+7KSh53d4O5tqFkcngnn19f8hbhxtWpnquo
EKxVdDgx3gZsevvj26rqtqnpJSSNhq6o3/LoDBW2KNtd4ajhze0DoLlKYPSh
76o7u1sHOlvbB2dwhEX0BHKJzznLu9IC0uGRhOc7iyXK0sO01mPAqOx2lux4
3+bhulybwf/ed2wxBBiOXkYQG48OV2SVK7HUxdhTCCQyrcVE0ZzSofNoOpqt
k6qXxFs7Zr+24hh0vnqHtrJqlCv1in2DeX/DXrh07GeuE2uOa4/JoM+GXcVM
IaQVqtYymzISj8yUbRZeElsbdJNJqCeIBDu+6MTaCKN7nNz0w5sf3tcDJwdH
8VgOBDozNTiGGIbh5lG06SncYl83eHwZIt0baH5b19zdC+gGDC/rpIuTszSe
9f5m16lbJsj3ttZ3jgJrq6oDtYAnUKb2BRVJ3dnd3tLETjNlFY+FZh+dmGlc
o+KQSKeZ2FIk3WAUpx1K64GbTVvFI6HLHCxOtMJia/TbB6cSvoDGxC2t0bga
tW79uDIwD2yG/bjX5T4PJyyW0NGWV2+Jhu6yNwWVVGD2btE5zBUuxx6+CVrl
Ww5b+vzAKhEe5echBBwYNAxqe/P+4/vq1oGZWb4C2No7CB4caJgngUGEme7F
ifrmt009IBAUi2r8a3VDw0D3AJhkwS3Ownmnrof/q3i8waBwWUJ3whM5xGw4
9HyRavd2S1wwGRVbDoX+UzlgExBnifyDfTNdppcfHmyoT/QKIpZPY3o8O4bV
gIuyhFhCoiqtI2bpYgerRwatRcGTkORCI39NpWLrnAm9edexc7RlsHsvwsmT
M/uWteCQugKlwktSI5QZrcpF+SKFxo/b9l16hUN0dJn1R0/OfPcD7X0jbe0L
aMrI92/eVSrsAc1xCTOAueEeAIgGYuAXxgAYUHPXQOfcCGiJiRz58V1rPaB3
YGpJqVHMwFjeTCq8t6lms3mbUpH/+OSQuGYScxX83RTdcL4RkvM3jvbF8uRv
ezT4isFwpKSJ1Zrd9K7ziLPAM4hVDG0syVVqCrvLkyNoNI7Fs5Jk2ydrW3Kx
USbmC2x2tVhgM5j2A8v8dcWR/Ujsy0ejF4VjT3rt9DFklntzN/dxuUi6trt7
yCOQ2RrdkWbLKFSHM4FYvnRb9kYnQQuwVjSTISaD3r3/8LG+oaGqZwUwDJ4e
Hp8eq+Ezu6ZnZqebWkHwIcQ0bmKRMNDQ0TYJHhkhnnL5i7NUy/O2NhzexWv3
JPtH5mOlmH4ctXPYAoaZtbF3alOLOEKlO+yL5jgLMOO2WcE0ngYcOzq/nsSE
y512sc1lZUuiCSNlcQxLZzBFEi7FsGk8MR2sKkUcEYuzwRPs7G+aNrxrWmvo
7DASdsZD6XLSFTDpMgGneTOdv81rhEKN2SITciUKn8EplbOM4fzz/c39y0Px
oTA4O9EPpEj0+FEI8N0PVfUtrc2tEOY8dKRxdLZreGG24vQL4x0fOypgMzfd
M06mdba1dA+31M0o1o3zGNZJRv815jLQBNJdzfY2f1XCCblNPLJUqxMI950H
crFyK53/9dGbVpG5tE3jmszoS4f4aw4HAyNhKNd23Kcblu3EwZGYziCyGEga
X8LYlmK4NKmEQZeqJJ49rVjjPjC7/Dy5Zfc0EIk444H8udPvNxyuHVk31ryJ
+K1WLFBodUwyZUNLXNdwlBvh0KfPn56fXx+enssDYyuQQTILApkfW4B9/+PH
97XtzXVI7NhY7xR2qr6nd36xCsLqa+3vfj/GGhochGFHO1pbQJ0trZRN+CKK
zUTBtDtXZhaPaz0P606VUnao6OMKJVLzJuVQh2eyGEqV7aJ0/UmzQqK7U0K6
wFb5roc+jZ6qUCmJGwaf2WA8V+yzuRw4kbtEVYl2VWafkYNn6qR85WlMItnY
DMfDGQ5La/fFjwNuX2XjJg8iAZM3eGBX726eXJT1qwJ5xbJ0aweRbRV9O3IW
jP3y9af/6/H55SYXAuOJyCEhckGArIctTfz1L//xvqmjvW4aA+heHgb3A5qp
Kz09/RgwZqR1YLIfC8Nyh1vrmwb7OobmCFoIeaUPvU2cFx8SuVvHpmSa4eIp
XrM5DX9NwFNgaVYLT0034lQ32bu/2zCz0miWJV217+lPXMdak0KxZVujawNK
rWt/R03HkRfgaLIx4oqcBPLeXafTbRZoN4/dfNOW9zxmshxs+Lynx1FHOB6P
+nx+vzqQLH263NvfuMhbZQIhfmNNafTrDYfnyfOw5+Lb89fff/1yG46VZnHz
I2AOU0TEgwiojy1v/+X79x/rmmvHIGNTCGDv6CgZ17EImmnphVJQiIlpPGau
pb2ltb27ZgKBo4EhePf2fvmABNVpVHLTkV1r0riubDm5wMhlEjbUwjWh1iPa
N9id2SfLMl5rL2m4UrPBEnNrD3W7ht393X2d7sgWi11GrAQ2exHK3onuKVW6
fWcsEzjWibV7T2GG/ky3c8K26FddzpN9Typ6EAiFnZFNUyx++/Li2zk8+LIr
k9IYdumBUXQQTdxmy2nn3e+P//VfvxfSd+UECjvdMYnk86Qrs1NT7e1j1e8/
vvvY/PGvQyOTK9O4meaxZSAONd7X0wOH8qZG52hDPfX17XX9A739U+jFWUk2
Ytk71bNwCpHg0IjiaTTnZ/GIissmECWyDQOVwhfK4779iLNoI7CUxjPjitSn
WjdZZWaRbkckU7okao3b6s/vmIUEAgSF3ZULZOZN65bRFXDucE3JgE26aj45
XQ8dyqgGk35P5Aiaj10+j+vwwB54fCxGD092DzVSBU2ps6pWY+epVPaymHSV
H6/+96/F25fbZ/MMEdbT3zvW3N324U1N1Yf66uqqto/VbfVvPvT2TWkxg5ih
4XkYYRww1wlanV7iQNBj9e/qursaO/rBxAXUEomh0lt4HJWJJNpZ5RypBeuJ
1JFIUJFf2ZqGzjuW6D2XwVPv6SfNJNGYsev40tUNezYgsEkFLKPafLqn59jW
LGEbm01EITA043owHIgW9/cOzoMGoSN94mQSmLwFvuVwV+82Src9Tt/pwXH+
wB3cs4ZuHqKFW7NXRpXJaZt8ud4e80ez6dJ9zP5wVf5y+9NvX+7LXuD3DZ1v
q9qnpkaGVgjNwInhyf7/+Nfv3jXUNTS0jKmGIchhUEPXcFt7W1MbdqB+fAQz
+OOHlsamps7BReTAHMu9rUQi970HQoaQIxEo2ZK4vuTgs7AstUSuoJ0cncQC
iXxg3+6zG9ibxUMu2SRa9Z8f6W1K3cYqSapZ56hVHHM8FZXSIDAkZl0nNxw5
IofGk8uUXnvkM9pYmuXlRaNAytpyqB0HuweO7b31oDUcsp6E784vyleVnSEU
alc3RNZsxhdIFbKlx2iiFM9//unXz18+lYutrbUdswS8bIOIZ1OAY3PYYfrs
m//xH//2H+/rmgeI+KH5mQn41MfGj10DHxZWejtALR3tP1bV1NbX9WC7Zyco
u3ImGwvXk5apJoFEgF5lrNlMexo0jU4VYaUSKXvbFYr6zSdGjf1YoDrU8RlK
Cl1vOLVtateUErlcKeTS2Fq7KuczCOBYhlC359o4PtSZBTJ31mDYjeS0PDJm
DqdelQqo3l2FyKxe3z0NHlu91t2j5E3gOn15d3C2JhaL+JvJzGU6cJm7uoi6
Y+70w8vn/3x9ub529TZ9bEIhwQILDiuU9fWPjU/SiZD3/8f//Jd/+cu7ho4F
AAZGxY01jwx3AuByDRTCHGyr+76y4jurehdm54eXlhncAROTTSAL2MtIEhYp
5KpdchpRtrzEpmrosBWT7ezQKVAqt21s1ubZiVa1iraurTkO1Aa5Qcs0K0j0
daFmxxF1qNjLRMm68SjiicU9zlOZfF8uNqfymlW+kIolmCJHFrNYtab2Btc3
Pbb9gMty7H7Oe0/u75wGtZhPE+8Fgnl/OBw83bf7Lcn7/PXL7z89Fc9vaztr
uyaHRgWUwXksZ3BuaBIrWiATWv7y13//n//jLx9aB+eGO+dqZ2b6p8G4/q5F
GmWqr66upqatsxZMxsxOchZHMCL5EoPD4C3jMMotPE60bThcEPG4qxzMqoxE
cOlNZqVIS9E6VWupO6eApRbuOVS7Xu2WY8+i2pRzNUrzphHpTawyGWjyqnHf
59hzM8OWbadLK1PvelXiVZMYYzfu7EWMQqVQYzw4Mxo39v1Oi9vlyKydPZ8n
TnSiVbY8EMgm7bu2nbPSfe744i7z+PvfPt09Xn8bfN84Pc4dmJke6IODwJjx
Ebocu8Ij9L9789d//+7f33dBYH0NzT3tg73gYeACbZmHGQA0Vb2v7etGAcD9
fcOInoU9k3UJg2RvEjYZCJSAyzg+XmbqdgOK3TM6HY/T7ltEWqXWtk3Re7bO
2FS5Yd8RUm1HXMY1CY9F5Cu2tkXLUseWnC6m8mVa+/HhYSZkt+pFIq3e49ph
MVc3Drd97t0jj52IFKG4h0y9dcd0cHhwYIsm7NFc+shtXuUKpb6TfVvwLHBe
uLspnaRenm4///nw8rX8Uyuorrl1mTVMmhyfqOpCTo0tkmliKokGe/u+uq59
oBMMGRls6EEN1fTOglugZCGyob2+ua6pt0XUAwT2DpKHbHLp2RQFKxJJg+ss
lGRFnFSwpbaYT+44FyBxYp1EiBVQto/2GWrljluh2DVt7Ll31uybTJlwBU7F
GLT7Osu+3UQiyvhS8arCFUnF7NvrPj1NtO4opaV8nno7lgjs2OzeM5NCT2SY
ZHsitdy6pz3KpQ9dDm80uc5ja82O+OVlOOwvlq6e8pHo6+fy519ef/50/9o2
hwIAMRAIYgoyXPNhurttiM6TkZZWeBNVbz/WdwH7+vv6WtoBrY1gEHB0Zp46
1/qu9sfuvp460MJgzwJUTvNeJagsCaHy89PoGiETWRFvIVvhujLs5XYUMKKM
x1yhkzhOnZql3JQJKUaDUqozi9cFUJOMrxShxfp12Y4lsMEka9QytdZ4eXd+
rtsS7alPjjftHruFoz0QcJ22dblqY1vPFKsUJqOAz6avmb3uQ6fV5w2E03qm
UHkSz4YT+ZwtmCvcXgfzn15vP38tvfz55bduILoXNDY1PgasGENLd3cLmC0i
s1aWZai+vrqmwYbO3vcgwPsZWOP0m9pxBGsK0FJb9fFtXVs7BghaAKB1K24u
fHltjrJgtPNlFDqVc6og6vhKQ97oOF8T8zbpKDqfvrTElC3ztKaVFd6m3nps
31iVKLm8Y+2eVSlb5+k37FE9iS9iS9jardPL3KlZ6XeY1RtKW1SvYulU0oPi
lWd32xE73leK7CalRilc1/HOC5suZyJTKmW35dptqeUiH0qkHP6H4vOdN/PL
58d/hvfn6+t0c2vLCrN2YKySFWi2CdA9v4IhiukLUjhmfhgCbm9t+b6tC8xG
0rdmRzHj3R/APc1NHxtbGhonB8dxMAKdZDYxuE4En8ElKo2rLKzao+Sy5HLp
mlph36CQqEw6Lb6yULlk6PgW/bJyVW3dOjlYZaqplA2+clUpVJoM+qPbbTSR
z5HJ1q3hbNgX4ontJr1SummyKGUa4YndnAhsnYSyFVI42nMaxEqlWbJ5eWa/
TPkTVxeJLZVGb/Gls+F8MeLLl1IpR+b+5dd/3Pzy68+vf8e1dwww8B3T7TWA
jo9jwJ6Wsf7JSRyVrICO41nTAy2tlXrQ6BmlahE4Ae391/dDzTVN797VvBll
0kdA02gYlWfe0gQobPgCSaKhU5EcCcclWTFadzQbgf0l1qZx+8CpUvJkAioH
T2AwxHSFcXN9V63bZkl4XtU+R+Tb1Ev9l6Elklhnsej34sFAJuU5DBudJoGu
MkxNZ0G/1xf07h9ehHNHx9sFncm7rbEorJd74WL5ppw+T67TVnfcyWS+WEqn
/OWHTOwsVyp/e3n57aenr3/rAjR3LMKbB8Zmx/trZ4baemZIDCJ8YUkBX0TO
CGE19YDOj50ToJnKIVK3d1TVABt++FhdaVGIlIhqhZG5LL59TXGypBAZOGLx
KnaezRGY+TzZ6bFxPcASbmzYIqytHcW2hkYgGowKkkjIU6tPN3b5mzLZ8bHj
TCRxnXnN7mxeRGSLFMbVE7ffmTnNBT17Hi2fZw0FrLG0231RSm7sxXPBsM+d
dieidoNGcRDOZ/zp61wpH7Wq5BZ9IH91/1I+T2Xvi1e++Mv9H8VfXj/98vt/
d7R0LC1MdH1snuwY7a2tq+kCiUdnl2fR2PEB1OREa01bb1fVh86h3ikpBjs8
NdcMamvqra1u6ERL5dBBMM63QYjvqk+RaokYx6WyyWQKnSCXsnUimXlVuKWs
GO3N6cGmVrclrnBLyYTH81Srxt0jw9aBTqhbUx7v6Y8qW2DP5SbAlyUGy6H3
KX9/6728ilhCQp1m53RL5wk6joN25/5RMp9IpIKeRCZ+YDnQ7FxcXniS5fxt
ILqr025bo6WH+9LrcyJfvH84Tj98fvz8+e6Xn3/+ebKubWa6f2i4rba1o7Gp
vrW1B47lEOFjkOHx2bGpkd72rqaP1fUNjSOTYwMLY5NVP7ZWVdd8qAcgZq2L
Uz0LNIPyAHriR5MZeAJ+eX5peXFmVSPA7qg5vMntXY1JY9igs0QboW0xGsGO
7BMY/L1Tmtks5ZsO1mRycagYCIVO/QZvgEsgysx2kyPvyqejuWTQZ9bqtwJ7
GpP71O3zHZ65jj3+QCgdTV9Gr44tTr0rVb5P5M5LiWDYwlOZfOfZcuHq6SFd
vrx+Pbz99nj/5ZeHP3792/9L6YRWBj9gcLDmQ03LQMObpoEZ1igQNdFf3zfT
2z4Cbumq/VCLG6nuAs/MzUHpo287G2qqm9sGh6blkCH4OGcFK6OubzAqaEbC
MwgkDBmqt9Jlcr0WyxeSFSwuW+bYt0TONpnL05jjfTRmbc/nO3PsrWqDbuWu
zZo4inm9V1tpj45BZHDUtlApkj/PhT0Bn0GndaZs6/ats+ipOxe2HlvDFVG8
yEaCV0GbQ3dSKl6Uyzd+Wyxr0xh27JlKZ75el1PXny5eg3dfnr/99OXTr//r
j/8mNIEAve3VdaCW5paqvvqa9oFRyAKoe3Ck7iO4t7uuDzzX9mFotHm0Hgpd
XF5cgc0Au1saK4QGxi0uLcKEbj3TuqziuxQUBAlFwsAwVBTbIiEL1gg4PJ2I
0Pijh+59/SbFpUchWRY9Di83RaJHyfWTLZ1zXb2v2fddhmOXeoVfgqfxlZtH
8UK2kL0OO/S7+zKVPepVV5xobXPP4t22OiORVDxzGQ9kfbsBy3HsNpvyFc/O
H/Mmpd4WOM/nys+397HSy9XlxcXjz7/+dP/plz/+/Aquqhpoftc60drY+PF9
XedIzyQKOdQ/3NY3zpoZAvf1AgHA5iZgF6Ctp21gGCxbBoMB/a2N3V1AChoM
HUYSCCwNiqdkCCUiDAmLmsdi8FKpEMdBk5koqRBJczhdIb/90BpiIwkktpgl
5ihDPv3Rlntj7dR/KFo9LJbPA5FjmQuLXWYIVKZILHt19ekmprQ4uLpNn0O/
pjWrD/Tru2tWc9Qfyld4LFbybzq0wQt/Ief0xNKp7PG6zpounJdvLgu3t/mX
p/P98OvvP//y+bff/nx+aahvrq8abIaM99ZXdQD7hnpGW/rmajt7QEoecAgy
DOpqqx/s6O5qamwcbwBN0pGDgP6+usaWnh40pWMMNocVSVibgTMai4BHIxFz
aPw8BQ0n0ogUKYkklVNWg6Ejg8doPtrh0XgM0SYCZ3YH3KtnOa8lGD892mIb
I56U8yS7eUbB4sgkluA0eRF/+Bw/t3ttEq1yfVe4pxdYNw+2FSa1MBzKFIoZ
3/1Dau94K1sI+5JnkWQxWzgxGvYq+ZVensrndxfnL/nD8N9+/nL3+Mu3//P5
t4a371o+jPdD8KOtXcixBsz8ELZlcGCoZYje2tA/ARkZ6aoHoAdaATW1PY0N
lZzB3R11dXWNdUD4EgAxAxjDyImCMyORz8PhwXAIgQSlbYnwUjRVtSAyyVWG
bX9CTJAoTgqbOAFPc4JbPrL61Mp4zrV9ltkqhVb5Gz7XvvFQfyZBUsiVLjgt
eEO/ZjOupFfD5RnMXJPBrDdqNyOGrT1PLJhNZqP516LDHjFd5mPxPV/05uri
/MSkMcUukrnHh8vS/VXkIXeS//qfv98/ffnp//7yC7CxEUYmzC9CW97BoQMg
FGESNVLd2NyN6J0A93ciG1u76vumxrva2jvfNzVVN44AW2vfvv/YUA+ZkA0j
BzoQWJ5I6s6ScDosa1mIWmZDFqh4ORvHUqMYylWW1GW0SVl83WlIQKos9xOi
2OixrFouY35bMPHw3+dWoTTp9gbOt7blFKpo3Wx0ZyNXl4VkIOtwyDeOjRor
g7h7sLWXVhuspmDiIhc4v7nL2n1x01X+3BvJeIrZVOBsa33bfX2Ru7i8LJWK
udeC4+rnX758e777+58vf3RDx2Fk+sBAa1N7B6gXPIQcXIB9/Njei5iFDzTU
1o90dLVV3qOgju7vPtS9qelq/vCh6l1NVz9ZONUyBJzuFS5Maw0yGXmZsywU
oJdm4TgIlITFyDgbNApDQTadGrQMuS1okDKpNFmEaTje3Q6GwhHXru+i9BJP
FZVSUTIRjpklNJJItaaxOAqX2VvPc/rkSG7YOaKr+WS9wWJVK6VsTTJVDFWI
5bbsdCa3yvlYMFGKJG9KsS3z1r63cJ3L31+XH+7yj8/HmZ8+f314fvzHP778
fWYaPDw231NTPdjcMNDbPzPePDDUMd8NXoaMTza1tAKaugabBts6m/7t3bvv
P757X/3Xqram99WNIJIYBgXP0isfwK4QKHvyDa54EQ2BQRULE/BJpEYow6AZ
eLaSbJAjoduHOrZ8hiUwCCSKTZ3bnUtd2tb9pVgqHizt0nk7Fzm3QYBaWhFu
Hm+7ApELZ6587tjlb5yFDWI2V7t65NrUr29EEumbzH25dPvq86a3SqXwdaZ4
4cnlzi3bW7vJYqF0/VB8eXksPj+7sg8///L89fnPv/3y0zwQPtA+1tva1dbQ
2tbdBppvRbEWEG39UMggoK6zrafzY/vYbP1Ud+t/vK3vr3/34YfqmqoPtfUD
SPXywNjMAnESsYTgcPHLZgpiREycRiwgFhFwikhGgS6Tlsgco3ldIhRrpQYB
fI4rkRHkW/un3og/a7NWgPg+dRZwKRVrG+HoAX15ha7kqw+PUleJ1NNNyuMT
G/1Bo164ydcadmKHlcWRzuUyd1d3Dw+BcHS3nCuWL/LXHkcifWzcPE4mC4Xb
h6vnl/vrpy/O9Nfffnv88vKfv/35//R3ouBzcy39DXVtY42t3T3dsAUMj942
uDA009AMbl2RdHRNDfcBOoervvvxTUfb2+/++vbdm/rmvhHV/uQUYXZ8CcxH
rLBXMAo5FQYcnwPDCehxMHIRhiTRUAQi1C6iVgpkLOHIy6S5irKqCTpbJOA7
d1oD6auf87nL032l4Zi/5SKT8EIFg+lzlBKl8vVr2nsm28rlNzX7pl2jasft
TqSTvnwhkjt/fPocSQf3s5f567ubq6QzkzIZto/Tl8nS89P17dPDzcsnT+zr
1398+vPbn799+qOzC4DHN9W01NS+r+rs7odhZGiyjtSwON0239jZDmDjansR
3UDA+Py799+DAT0dH2ura6qb+oZGFzXITiRF1DstZC8iMXSSijja2T2Fo8ow
E+M4NB6HoyCwVIaMyhPwWGYJ2YygLsHJEoF8lW8LZSs+cOB7+v02dxWyp2SW
EI9HwaGoCqPF5TYlPt/dZ2Ihl2IvWrCvbe9bd9f0DmfmqpCK3hTLxfBt2XeR
t17mXz4/VApKBNJykeHw/CJayF893X76/FR8juQ+f335+ref//j2+csgCCle
mAS11TR1AubR8HEoCsJRMzsxxoHB5knQ8IoJMtjXTZoFVf9YXd8E+FjX2lZT
9bG6sXUAggT1IOhsM29BS2fyMRgzbXSiA88bn+bDhrDzGIKQiqTglpEcHH1J
adiAq7h4lERDpRwZV31+b9hrsUXy17lI5ixcTjD3vWvklWUmU2YOHijyTw/l
q0gwJDu8LPlspoMjDUWR9mQe7y4vrgo3yYvrTDiUspZvbh9vK6cxHomsKtYP
z68KF3flp5eX69eL22jh5y8//+N///JfP//027QIvDgx3NBc10vsnWF2AeZG
YWgcpGVIOD08Nj3ZAj+anoG3ri7Ufhyh07/7S9W//2ttzfsPNU3tzc0fp5H0
5WUZxxdm0slQTExGgqOgbD2XgJ+er2THwc3j4DPzbAkRv6yzrKg4PEFF0Rn7
e0ZLJOjyGA+S0UAkmT31nefMnJMN4hKWQq5Q98bZ5c1T+SEbCUmt4YDTZnGf
Z9XujDtTvL/IP2fKr1evV4lo6vjuqniVvzuPB71hnWj9NHV7Vbgq3T1eFV8K
xUDm60/ffv1fv/79p6f/nBnohiIR0L6e4SkUCgkED9bjF2u6W8AjU2AAbHBk
Ad41QmJj2xCTEN789Nt/+f7fq6rf/pPEJwB1o2MrItMa28RkIDgEfpy3TILT
VWHBkFiOEHBoK7CpBRIUxuIxVCuqO6MBNYNgmmgcsXpr9/LyzGKwn4YdHlfS
fxiMBIi76xTsEoev1GyfJZPl5+ub5FlQvR+MW7ciR2XbZjHsTGVfi5lU8dOn
24tcIpf13t/c3hcfyoV0wruuXbMFb64Ll7ePD7elSuGx4tdfnl9///bLH89/
p32YvacuDLf1ggYqFN0ztzi3iBWP9fTOzkCHoY1zKGRHz/jsW5huemZiZQja
8K9/fdtU/f5Dcy8QNtrY06Pch83HtmloJEuCo8+MLajE5/uSWZKYjCZTsWQU
Cmdcoyi3hbF8cH15YYojI/CVuhO/xxc/UO8FMvGULx04O88kdugGKgzHoPFp
Fk/o/PKucH3pdiv3Lm42N7LHO3vxy7TLUb7JXn66KZSfbrPJVNz//Kl0Xirc
3mWTMTFPvXcSr9Raurl+vL4v30RLf/72+z9+/eWP327/a75znjU62fmxdnCQ
DWlp7BvCU6aY862NPYPAASC4u3N8EVzf1iUnAKdIxKF5zLvvf2ypf/e2th0w
MtM70MheR8sSWp6QgVqeRU2N4hYR2jMdl0nlINAE+MrwrES+KSEyVtUlqwyF
IcC5HLZ17fjEdxp1KrZfvt5Ho4X4mT+QiLHJcCgKR5ILVUfJSPQ5n748ONHu
lp6M64lTU7JYzvlD2YdS+XO28HL/5c6fyfnvn17KqdzDzWU2tbWmkVlzhcdM
rnT5ept5ykXyf/zy0+9//OPXvz38ra8NAgJ0T/W2zS7AJ6trW1sAMAKosbGp
o6+5BQBpaunobm1sBvNg40zO5MgsDfzdj3VVb969q+0YH2lDwCfgh1Q0dRUx
g+YyZ2EAhJQ1T2KP0kgrRCFmCs1BLInXpRQySV2yrCBhErWIwVFpj44kGyf7
+3up/74I+IvheCCajZhXplFIJJlHUAZ98eRdoJA9qyhSqmw0ezYi8Wzh/DiW
uS4/fbp6eHh8/RrPJgKVi3I5UokwdmzQGy3BaOFTtnB9/e3rzV0hVPjb5+sv
f379/dPznyO1vSMAyHh3txALAna3gprHAcNjrR8AAOBIe8fQYPNM+8eJqqG+
tpre6f62agBg7OO7H6re/fjvb7t7RtvgXFDXNAE+icLKGBgKCULc21LD4BAm
FoblcVgMCQXNZQs3VSy5Yd1AnsKJmWyV0nS85TY59469F+eZrCMcyYTSnh0b
cRYNn4HgSfLg8a33OH2biZyqbNclk0m1Fz3PXiYc4ZufbosP91cPn25eg8lC
8P6nm5u7fOn8OuOTy/T74Wi8VE6mHl9fPz/kQ8Uvvz3/9OfnX+6uXrt++Gtl
jQ811cKmYHMD/R2tgMbhqTfVva0To8vN/YNNzZ1DwDbozAQcumqHoOerq96/
efPu7dsKqY2M9PZO7AwAJ0C9EKKYuSCYpSwvcYT4OSwJgUNAllg8OlnOUFoN
2t3yulrLWCSgCEs4Nl6hjcXs6zu2iPPkdD/lzITcoR0vdwoBhU5hGeaEPeuL
FksZv23NGYtvK3TOVDJTTp0lireFwqfHp9vXq5do9MKX+/L8cHOVySXTvu01
rc6WCV6U7orXD3efX6LBy59vKzF/+vJ899DUWV1X3zg2Ug0amu0HDAJrfgCN
9PV/6J5oru0FvAP09DT3tCxhpsaYDN46jDD4cXKx5eObtx+q6hpaB7o7+7Gd
q5TWKRiORNlUQ+FL5DkKbxlDREKQy2w8kTLNQC0QRQq8CLe8IWKurNBIRAaB
vqMU7+1v2LfW9YdHYcfBqfPY5RXPQSHTcCLZnAiF9srJTDayb3SdZ0S6NW85
FSomvcl4qVi++/T6+OX+S6Vi/+3Lt+eH80Q+4Aluata2w95g4SJ/m7su3b0G
Q5mH65fHz79++nT/qTItPjY3Anpa20ALiK6qwZqpyenJ8erGjubat9WddbXj
rbV9UNTKIle5Je+pHwUd8Po/fKw4RHPDhzYAoHt6Et7dtcSaJzCYZBSSwtCy
Vs2E2WXY3CIavgDBT2FpMj5mCUnFoFY4ZC6OTWauisU7Atr2rtXjcJojvtOU
f3/bsEWbm5/BsIhie8TtDF5FMt7Q9tZx/GDVaDovJRK32WAhf3Gbefz29Pzr
69ds7jJ0//T46ek8ncyFfQq+ypKIBPLpUuEyf1G4j9qyFfm7fX5+fH18qe6s
f98zPVk5TU2T8+2NA1BKT8/QYD1wcKi3b7Dhh77uoVYAcEiAWRcS2tuliwgT
daT1xx9/+FBTX1VhmfbFkZ7WRTUNuYxfIUzCCTQKWkIlklCLi/98KswkfJFH
FlPxyzgaGidg0ahoAhdP5jNlB2ti6bbZZgu7LZ7dtNfvPOSjSQgEnaI4iLiP
/SfJi6BjXbW7fmDY9p3ng4GbTOC6eJ0vPX56fv38/FMiWvTf3335dHt5Ec9c
Bnf0OtVx6vgsnCmk86XLYsp39XTzfPfp6eb6+mtTz9vmmb7qtr6hznfdTYsk
BKSnBzZU39PePQyC9n/oBPY0DJFXUDPs+kYiFY8kYTCw+e+/f1NfV1fb1FbX
g5hqbcZA+8f6+3uxS6PzC8hKTTAMZB4CR86OwsCgqWk0hbS4vIDn0nALGAoa
ziQykDqLVadR7NvCZ+sq1+He+u7Bnp5ERKEofOZObN9yao+mA16zVu+/MG5Z
405vRaW8mcen3MWvv/325cvNczYaCxWvHx9vS9GsJxnZMhhE5oTzMOUvJJKX
hUQ2dnt1+e3p4UupePPcVl1VMz7aXfeuB9Q11duywML1UuHNgMbutq5a0kJr
X1vD4OAsenvgLUKqG8eriRjoFLS3sbamqrahub1hEgxshQDfdoEGh7AC9Eo/
WklHL8GmkDPwhYVh6PTMHAqxMI2cQWKmUeip2XnsEgqPWhILNDtGtdDoDmoP
Kra057KeOFWLOBpXSkWroq5tfzyQd9v1InvBvbF3EIqGwsls4PLhLpv74/Pn
u+e752woc3ZTvr+/fcqmA5Hwllq/FTqPeM+C0UwsXUzlwjfZ+0+P314fbm6e
+ms/VLcDKvgyNgdo6BnomqFPLq4OAOs6wEOj5AFAT/1kf+vIOKCWbYOC0SvL
9PnJ4dnemjdv3tfUNTSOT3V3t4yiQP0D4BGujodaAtN3KPLVceoSFAobHu2f
gjCnJuFL83NoEgs1ixhbhv//N2K2LaJ1ncSg2nceHu/ZvNH141MDbWmFwqUu
6/25zYjXE9tQqDfPSqldkzd8fR66iPlurooX10/XP/3x+vAUC194SxXKuX8s
xzP+wI5Caw7EQ5cV7Uqkkomri8Dl4/PT0+vn14erl86B5vaabkDDaMd4//v+
7h+AROrkaPfIbH3thxYgsKu2a7Guub+jY4AAJxDnFiBjSARktuvDDz98/666
vnd2qOVje9vg+EgvAHIgo8iOJ2aV+IWZaezy3BQKPDEOmV1c5KsohBU8f2V+
EowkLbH4bMmq0SrDCfQ71sM1i3vrxGkzW3yHJPQKXsQiKCOHW56Cm6nJbK2Z
/fndg0g0643nYoHiffHy4fbu/uun1+dE/NqRuylmL56/xMJe/+HaxpY95IlF
zhLObDaQyQUK5YeHp58ebu5urjv7fuxpahuoH5oAY0ZBjbPDywuD4Clgf3VD
c3N/V0tTAxU82PTdXF9fKwAOZ9CIgmXoyCDo+7dv6ztG2mu7u9tbOgfagf1g
DE0r2IBxiEsIwQqUBB1GQMdmp+cQs1AibY60CJUgR7EQCHJKTObKxRzsKk8t
1Tl3Dm3bm6eB40NbzCZi0jlcKl11pLem7CKrLbuh2Euf7x06bxLuRDLrubou
XTzevjz/9u3rl1Qo6ys+li+S5dtzp9uxrlw3ef2OTMTlc6aKmYsL/0Xh6vbp
6eHTbfmx930boLmhqqlnCbYCqW7oH1oSTM/31NZ3V3Z9Vc1Ybxe+uf7NeC8R
T+dOz8ln6CICuhm88sMP7f19jdUNDdVtvV1t3X1g9DYbR9Sg1JixyWUtZJK2
sDDVPwmeQYwsIQm4eahAuDqNEmNQk6MLklWpTikSyeW6nd39dHJD6nbt2R37
fAqZTaNS5TvuqJITvts/M63Zc1nTcfQ6dnBZThznr0qXDy8vX55+/vZr1nfu
TpcvCpliPuc7tmuVaqPTfRLw+45d7vhFIV2R4acvd9eXj1f5X950DPz4cbKr
fnwWjuuvHuganhrr725raOzpm2joWBie76UOf9dA6V9h7i7RSHLNqmAZOAwV
9Db3Vb2pqqmpra/q76vv68UQOLhZggy3JIWN9KLouFUCaKS/DwgELyCXSDQs
XqQWgxDQ+ekJOn9FIuUqNQapZtt+eODLOtb08m2/5ZRDodIZq3S+a4u9lg5F
AmGDypaPbjhCqaS/kPR5C5nz80+Pt5++/PzyOR3Nn17+VLjI3FQO3LHJqFGv
nwQPTU6P22n3V/LzRh4+v366u769uX3u6GwYnqmt65oY7gB2zIPqweMjLROD
oPFeBLx3Hg2kDBN7m6DAOZnuwCpc3rQu97eM9Vf2eeeP3/34rrq2pa66CdzT
OchiwaBUrZzHWlsaWeyCIuZp88DeEfDg9PwUdI5EBy+SVdOd41gESX2so+rl
PJlUINMaJNpY6sxlNOpOnGYxnUah8wVkEd8WDZxFj5PrBn/Bs+H0XN8dHjqO
fflAIXdffPny6fX1JncRt1/cXCRL5/HLC69ZpVAZHP4TmzMYPN2NJdOpM89d
+fX16/3DTeEToq2pv/pDa98SCz4LbGkHAXoHqOLpscH+pu7O0YOxJdJITXdv
76pUo90R49UaMnpxYIi1ONzxb99//+5DdX19U30PCAgScml4FIZiPWMtgMgz
Q0sLqP62ri7AQN/czCxsYrhvBIKHTYBFcoFIr6IsC7lUDHlje2dtIx5zuI9S
bp3DUulNJrpiHIS03x1yRX3RDb3NFbA6/XdFW+De58glipmbCp/l7r7cZdIF
VzR/nsmnclcl3/6qQmc8PTn0nzqjh2f/vANzGE1fvJS+Xd9dF56Bvf8Bmu0b
AA+2tbb2NdW2Adu6KUoYWgz+sWuwjrrYM/uusaOevSZak8sJBCWfMb8KIuMH
YAvvqn98866qobmlo71vdAqyrKIh52niTSKaJmbgNmZGAM3AWfBMH5s1M7uA
WELSp2YgQ3iGmqWxGpgLCB2fK9u3m44tB870cSAaiynIRBIHs4gjWiOuo3T4
1JVcXzu0em2np6mg+6l4epTOXlRW/M1T4fXpOpnLncXvirGLfDJRCFvVCqlh
Z8d+uO32eM8SoUz6wJO9L5avbx6u754a+iZWlMCx1poO4NDw0FBH1QwfzZrH
MNo7R8A9MEpTVXdrTwtBKF5VKYkwMWtMRGlb7J3Czjc19NR+fNfVWN/SAhqc
RK5jiSytljxHFVl5iMnZbtAoeBA4BwbP4zAQBB0yuKoYhE1NQ6eozF29AM8k
bUhkey6XQnXqyR95EoHINonI4vOW5nEO5+FZJBI+iK+rD6M20479LhcpX566
zhPXkfLt00u+fHsTSWdPo9d5fylXiGWSOxI1V2gwO09O0q7jcDCQzbgChcf8
bfnm9enmvqUPtcXuAzaNjLW1Dy8PdQwRIOP4OUJfN3huYIY//l3bymR71yx9
c1O6ip8TjtE2IIB+2Cx8YR7Y0N/5rr+nraHpn0+tXeQyGFgEWyAwEkYnRoZ7
uFwyqB3cA4Gi5sfHBMQ5GnsIvIRBgxFUg89mkdM0GzKj33V46vXGXAF3NGNC
YZYxLA6e6PDbKyASNrvV6m231XzgLkQT8YIzlIkVY48Pd59u7p7Pnd6IP3MT
SZTimdh5fIMp4FJU207/WeTEHYjFUheeYOrq/L58m69k2DbWxYKDq5qhU50j
Lf1TnUg6Ac0iAkcnB4AdzY3VvVPU2eqOToVWIJZjSASYHDM5g+CNT86NNzXV
fKyu7Whvau0aAoEneAeqSe46Z3gIXLHEaRAQNw8aAfRNAPjYqRE8T2fhDo3C
F6eWGdMrOsW+WqnT0S17Zy6n58gbj7rSSd08ZhGGRhOpRtOOzRs829pWK3d2
Nrd2j5KecPrFGUwVy/Gbp+unfPE2Wuno8OVFNJ3LRCKeoIbB5bDZWuuB07Hn
jp5X2NThvbi8eC1eFK/Ok9Xt6KGuqZrO6d4eQGPn8MDYBJS2NPZ+tKO2vfPH
pvkJGBVW1zrcNyteYeIQw0T1ePcMamlkfhw8OlBXVV9Xac/Wro6O6XmMhkNk
QgEADJ2Gmp6fmKUOTyEhc2P4AfaZiYNGoTGw6eHZGQSNhptfWVOsafRclcd+
Gjg9iIXC/mTSDFtZWlwmETAcrdW4t7m7vqZe2zFvyTa2vGe+YjHsK12WY8+P
uXKhVE7Y/bFgtlRJNBcJRn2reKZEQNXs7nlttmDCE4yGPImb2/ubYuHTTaHQ
2d4zPz7V09ff1DI1Ugekw8FjnT2Ng/Da/tH+zkX8xOgiqGYA2AUdaqWxR/oq
bLZM6FrATM5BJgbaaxsb6hta2rp6m8bnaSvTCBjZuA7h4ejLsBXp8DSJOocc
Z6KWdyRGE2SaN74wA5lHIeB8DtGyzl+TcTn7anvw1Jy3eQPxrGkRtQxbwFOX
hPYT875998AqVyu2NyQWw6EnkrsLRIrpq9BtKXOeK17Fba54MHcTi19kYkm/
VYtnqzgk5ZEt6fG6bEfZ63wkefOt/M//G9yXih86ehuaGlu6OjuBY4utwMVa
UPfAWNvkGBA02jhP4YLH0U0NbUgBeBKyxJxcnOgb4bLnFxCTuHFQX1d95dXQ
1NbV09g1NT4FhY/jVza5ah8ejsBtY0QQOgRGIbIEArlJQF7ZHF0g4rFLS2NY
Bo2AZwkFSplI7XAfHKc9QfdFwgBbwC3OIwmE3VOv++jo5MjMFEmsG8pNuy8U
y+ZckVyqfPGpmL/M3ryEbY5wtLLbk7mUP5WwrzPIEgFDYncHdnasJ+70eSEY
u7quHMDi/d3j/V9bge3NgwN9DU0doKFpKHy2fww/1Fw/MzsHrGrk4YFoEnh0
sAfSPzAGnUTMgGYGkRMMyPTo2DRzuLW+kt8/78kAmjv6p+CIGQQZTrHpTxCL
2KUTBhsytzBGdJCZNKmCLOJqJkahEIQQMa3Ay9a0KjGJvrTnTB7aj2L2+Enu
2gJZIGAxJCzbeuQ+djiOnVscrnpTKd20ByoNepOIJVOlwrfsZfHi8Uvk4NQd
PL9Lxy9CvpDrQE/EE+kChU23aneFfcGLZNEXKDz9/pgt3d48fPmxsXl+rgrc
XtPYMjiEn4TOUqCA2f4RNgTa3torm5taRSKGMB3Nw/3dvXMjncOQ8VWpYAk8
0Deqnn3f9M/62jrbga19w+OVcJj8JanVJ6Hy5qlOEkkgp05MSpRcOIaLwgxR
ZkemUFQSAkMVYukSpkiq1nH1GtlhIHLsOUld7kGhi9hlAkF8cBL37litZ3sc
oWp9Y31n7/gkkvo5dpEsFJLfcsVy4eYuXInKm7lJpJMuh/PUqaPRRVSKYtPo
8WR8sVwqEAtF7l6//XpRKt+9fK1rHiVMtjVWNwPb3rYLhuom6Ajk1CQACe75
sRZM7J8d6WWAKxIPQHb0T/QDWczpA9kccQjEXZFhqpqbGhub29vbAIDh4TEI
nbOKwMtOSnQKj6dSjCFWCKIJjEy8KloCoVHTQAAYBsGQEKgFnkahVIu4yuIB
SR49C8cdgQp0bM8uLCKxBJrMchI4sbrWj81CmbSCOPub4Wgi/Vv8onh9mXrJ
F/LF+6vg0VnInS0nzqNeRzDs1nJ4ai5ecnQWOc15E/lsIOYPl24qJnxeuH7+
Gdg8C3gH6nnbMNI1i1psnl+Ay8hNsNEGQFXbTEtz39RHAL1/sHawaXC4Cwga
H0ejj9RExMKSWGZB17e1tjS1dXR3doImkYuIFbbIfMSmn6+jTdJVJhZCWJXN
yOk4hojGhkwvz3eDwLNzlSFEV9n1ep1CsZmL6dBr7mj6OOmPpyzQRTgGT6Fy
9w+dXsvWulcv1FnWtPqNvaArnP8lmr+8jCcfctmL0suT1+6MnkXOk5lU8DCR
j22xuRLF6rZv3xeIBeO580jCG8nc//RzZXhePfwEGOyvaqpMz9qWetC7hrH5
RbIG3T0zCR7qnxiBjw9X1/csjXW1ygfrapt7OxASKNu/isVY9ngkDbmtq8J0
HR1t7ePguWnxBoXJ3Dd7d8ksBk9GR5BYUDyZg5ceKCX4A+l4N6R3CDg2h1nE
Mtk267ZRytrNJPaPzTZ3wpcOZz3baBRskcDAcWwnTveOaM9v4Cg2ti1irc3t
ipdeg4XcVS7wchlNXj3fx22eiDN+mcmkwv5oPrHDoXM58h2/KxRIu5Opi0jU
Gcw+v377uXR/ffNrZ+cQbGUQWNXWMdpUNdMFp+BdlL6R8Y5mKJraONTa2NU3
3te3PFxX39kB7OqdmBQ7tTiYxauWKjBtgPaO9o7WzsnRiUWqhI8Qcuc5p2c6
CWkRp5JMobE4JoOk2FBq8RQOhcToH5laRk6QqUu0jZ1tOVu4nYj5S/HgWcSV
T5Qja1gsAgZfIQmPPKeBXfGhS0mXmhxiiXTT44sWPwfTuats7LmYTaUeP4eO
XJ6zxGU6Gw97z5KxXT6Dy5duBu0ub9CVzKQ9viNP/uHz/fP1023xW28bQDU7
Pt61iKJCu2beI4abqbODg9ClprEZCIaL7B0c6GrpH+js6gENgzqbejtla4t0
6olHpXOgmgB9La09nb2w+XkYRcjCsjB0+/qRToebw+0Y5ocWYXjegty0LVGr
1KsE9dBcZYIgkRSemq3fUrM5pqczRyTh8J+7zmPlS83yyso8jMVUuv37Z07j
6bGCply3iFfX952h2OXtiTtymYmVKsqQe/nVZ3f5Pf5gNJsNpypr0cJgC1jc
bZfF5QmfxDPJ8Nmeq/zp4en64eExdN3X3rWJbh/sUBOB3d21/waDQEYHZgaG
JwZG2hbD4q5GMLCxHTjYA1saG23vGmgf4mFH4GzzsUZ9BG3uX4ANdfZ0AhZm
ESTygXbDBHM75JFdHGVWKEAgFohQ/AxBghMwXPEd7CJkBTJJQK0s0RkErVwk
EBwUYrZszHEQjMU9V1k1jsjAIJnLyrPg3pHP5j+S42TrxwqJ+cD7/1H0Hj6N
ZeuatzTSjO49Xd1dVRTZOOecc9rOOecccAbb2BgwYDBgkzE5xyJVTl1dHU6Y
c8/cGY1mRt//9O2Sti0ktG2vtd73eX6PvLfXwcndy9rBwfurkzeXV3c3r19v
tTa31jdB3bm/vPrzy00j6I8E/PXV+dXFw7Wdk5cHuwsrb/729e1H0N47byBE
QlFGFD0fRCEQVCqUqhVDUHQMDk6nM7NtC28Aj4DgqVASoOIMwlng/wkCDeCe
bo9mZmQwHEUsJ5LwPAFHYgQmfZF35thK4SxpN6tsCY1J63NqnVHLbNpr2ckF
rCKpwQjI1YBWm5+NlWYTi3fX7XeHa4snuxtn71/mjHafTa1Vxzd25w82ZzZb
aVuotjKcHJnZ3ju8uWmenl7fHn4+P72/unu3vbi1vrZzsXt6d3H16c3NtNcZ
i2dqqwuLSxfLu7un+yfNjfvPX19/uPnb+5tPQ1imtW+IhsQh4RiuENrDFPcO
vXje+wSNpncKbCoUOoQGExJFG5GAQoJEwYhk+bBzay2XmpFBiTQyg0yl0hmA
0lbcaVan1Pb83IeKLxDx5Uxqb8Aoc4wG9FptKA+Oh6zVKaQKqUBg9xdHJ+rZ
8qtPW3/d3ts7OTnefXwZ09h9BqlRn97cXrnYaKytZ9zu4fnhVGm6s7d3+2H5
/ODi6OKXk4v764eHtebyyurO2f7Z1cXVxw/30w5nOBKurM4tr+yvbC7v7Z82
N+/fffvlr/d/vHv4gB2gl2l4HMeARwo4TMQzCAnGdfyXn5+jMdRxLY4w0NuD
ofTohexhLY5EgaHYHK3ann3YicfqAiSNhMLhSRwWX260Zl63Hd5EzXT0eToU
Ks6lzH57SKuyelIWic0/3hqLUYVsmZyvUBvDzuGUMzpSOnroPO7v7l4dnu/e
XKc0Nr9ZqwYSS5srB5vznXba5Y7Nx4dLk/s7nce71ePji/2rf15fP569vl9t
ttrLO8eHJxdnL7+8fjPj8QbDgRK4qlvni+sLW1snSxsP3/7+7uP5r5/ffEKi
GWwGhYgfRGq8RCoGS0QgRMQ+ajcahY2/8wyhkDDoEJktylkxHBQcgxrCe5JO
29lBJllkYogkNJbGskg0Ioup8LIxvDRTjMb2kyZbsl4fszj1BpsjbI2q/Ul3
LBijyLhskdxssesDoUwo4JraPD94WN3audrevro9HNaaAm63TRqvbyzt7dbX
Z8N2b7oUGx6b3mkvP5y1T87AqP7Xm8vLo7dvW0srS62ts87l0f7Zy+OzeZcj
GIiPryx0ds4bm8vHne2Fjddfv354d/j56+O7QSSNx6BRiWyBXk9HS5hPuxm8
FyLQE3uo5mk/Ez1AwvSyeXgDx6omQJBwhml11B8+WYyFk2QUAg7HOzlcp1pm
sKW3J7fv083ternmKZc8MU9Ar9KYLTFH2e73h5y1USqLzBHJ1WKl1+MLxGKp
sfvXu+/bG2tne1cXH/aSFovbZ7MqkpX2aqc9vTgWs3gzxWCyOLmztXp31jq+
OTt78+cZ+PzqdWthaXFp/Wz35nD7/O78rumz2r3Bamu6vbo7s7F5ubs1t3n3
+18/P+x8/OPqAYKkc9h08qBITYYicFhcz1MM1Mql90D6QWTmQSAwCkYgJXDx
TgkehiBJ3Ie3SW+oNeMIB/B4NAKO5ZFJdA2gNc8f5s+/TJ6ubjVMmUrQ6Q3b
nKAcmkNej8UksQTvSniuTCTg6NUis9royY4kq79+2n3dWN2+OTo5/bTnt1ts
Zo1BFRtfXtybHp+rB02ubN4dKc/s7bSvL1YOz8+PH387vL/fuXxcaTeXljZO
Oud7O3sfLs8WvV5nMFhcmphrtMrrCweb7enll3//87c3B2+/7p0P0UlePRkC
4VuhP8gklD4huqdP+t/gfRymWKQwcL/jM+YFjZ6eYkOZQqbU3Jwzag2JUaNT
hkQjUDA0mcDiqeVyy97L6Mv3haP6xcuEPRZfOm16CvGoK1v3VUdSOqOunaCx
RWKhVGHRyB1u/2g2XfvtV3D9WuvXu2dX77Z9dqvbqPs+vtnmajFXmfBa/MPD
jmBpcq+zenbePti9OLz97fzuVeftu3Zraam5sr97trN/+PH8fCnksYd8pXql
tTRT3aptLC3Oth///NcfDyfvf9+5QtFwM6G+PjhRrEYSBNR/E1J+ZNB7ng8y
RSQ0WQJiNg1DQkJ5VjcPQ6JBXYGRik7uyXoYceEgEoPDEAkkutqh0CgXvpVP
9ko7Y1vb5YjDt9wajVVSxtBYPV1e2IpnQpMBBk0sF8p1lrDRWQwUM4nan7eb
HxfbzcvO4cWbNZvNYjfpjZrkaHVkpZYpVhxGfyTvCmTGdzdXT/fau3vHnZd/
XF3f7r27bDdby3Mr253T7b3tN6dnS2G/J+QplSfnp+cnmtWVldZM89XnP/5+
2nn/x94tHKlOo//SiyarTETQ1bm0PrRI1A8hcnAkKVlixg8gBkhEB92mknAx
YrQh05axxcGsw+hC9g/AYFAskU4Tu1VqxdbL6mmgkMpsnpQi/nCm1czPTIfs
Hm/OUx31TbnH3Uy2iKsSG72RTKyaGE4MT3wDhXFxaflsuXP1uGo2gtldZTFk
S+PR5eZ4ueTQ2ZM5pzdVu9havN6b39w97dx8O7h5efDL3WJzod1c2V7f3T7c
/nB0PBsKBUKe8uT4WHl5bKHabs1PNk9///O3o84vv+9eQ1AEIRnS200UyCkC
MloBgzH8VBSVAIfxUDBKP6RvsI8mM3vUMpZskEnyh9b9fGl8nm9SQgYGIEPf
dy7myvRqvjzVqV1tFyJLfzsohTLxkw+NzPhcKuT2erLJgiqsjhm4AoFIKjJ6
fcFUMZ0pjlb+PDy9aq4sn7Y7L+8XzUarSw3YdbnJ6djcdHmy6DDbU1FHIFU+
Wp2/OZhe2DreeP2P/bPT48+3i83Fhfn2zsZOe3Xj6vBgKhAMhEIjU/NTSxu5
jdG5maWJ+vHn374cb/3+HxuXSCo+wkENYQZJfgGPQ8VAqPQAGo8HW4uC1iOf
wwZRPEGpJg+YFWIynZT0bjtEwfycUI2H9w+hYAgCGm3XivkaQ34ttnEcL3R+
2ykEMsmbx1qh3IwGsjmDLubxeMV5qVCkVSlENkch7c0VxhbGG39dfPemubR+
sLhzetcA07HFoDCpc7ON6PJYrjriMtuiYWcgOnK5sni239pZ2195/LZ/enD2
/mGhMd9qNlb2NhbX2zfX+7VYNBjxF0eq5eVOcrE4U58pj3fev3u7v/rwZeMQ
gcapCP1DODaBKxFL+E9FYrSIC6HjkBCi1DhAwsKYPLHXzg0HVDAkFY0LXMZ1
ru201Ifo6RtEwUDHQBEEPLFOvH1SXZ1NTDX2d2KFsfD9q4ncWCNpL466vQ67
2SItSNl8kVqt9/kCPk9+fKI2Wt+e/vypsrm9Nb93cjtjMWj0BpVGnZlth9qZ
VDVnNbiSQXcgMnXSWrrcObhZ319/9W3n5Oj8/ZuVo/mlmemZzY329s6ni51S
NBGIB3KZseLiZmamOFcrZ2utuzevt5c+f2zvIVCAgwFBPMeo7TCshA3Xm7rJ
YjixH9GDFWBIEASTjuAAHqeLT4WgmAR94FXL4Fg7jbvx3X2D0EEIFI7G09l8
pS8MyvNwOJmvzKez2fjt7WQKZLJQtuLzeLKaLMuhlfG5Mp3b5ow6UyNjo6Op
2snc8c7M9srGdOficdJk0Oq1CoMyPrEQnva50hmb1pqMeAKJ8c5c43r3YH99
bfX1u53Dg4t3N/udqeXm1Nx2Z+Xi8Lc3hyl/zBcJZdPVcn09PZNbKo6BovT+
1f324oePc9tYpM1Bwg78NMg3dWNEULJIBY0acEMDtKF+PA6Jh2DoDHpqlGKi
yPAwAjdqmU67gq0jvw3WDR2C9A0hoCi00iFQmqsnk2MrYaNjqWwLjyVu9icy
9blYvFiJjIcyaoaapVBJBTyGDlD5vLHxXDweKF3XL04XNnaWKpuvvlT0Rq1S
odDJwuM1d8vvjsScYH1GPYFkbmVy42qjtbPdWn24PzjdP3p8uT4/OdeqTa1u
rr7cffdyP2L3e5JgU0/la814OzuTLWTLu9++vt6u3byd6fTR2HRY/4sB6FA/
EvYcSsT3P5umdcEHh7C9PyExEDC/k0mKkLzEZWKREIjUrPYXrAstr7evH97X
09s/BEMi9BaeUNpot5fCXpUqVUm7c6nzi9nU7kI+VB2LxVTeoAQUJaXaqJUJ
7RZTNJaMFjLR4cPS/bu12dnO0fLFx6pOr9HIZUqZrzjiWwtG4xmzyx6O+nyJ
8cXltZOd1c311dXr+6Pbo/3H07XmeHupOrewubO3fne8HdBaHKHs6NxYtT05
tp2p5dKxwsabD5+3qkc3lc3+IQyW0Nf9DMbDol5wGXg8rF/Qh8b0IImYwT5E
7zMEEcUSWN0unZo3NIDE0mUzwfRjp+brGujr7ukFaxSJY7DYzqgvl/XMViPS
8nR7LhR79aEx3KqtpnOFWCVkL9sAvpgl0GpkSkBuc2Yy0cWNQObzwR9vF+sH
Jzvtx99rWg1YnGKFMjBRiuwOlyJenc0RjbrCI/Wz3dbJ4c76/tHCm893N3fv
//rQnps6Wi3v366dnZw8vtzzAjprJDG6vr55VZ/YyG42R0JjK28/frqZu/w6
fdD9o4lFwfe/gFChLzgaFLOLABuk9vZC0Ag0m94zgIaCsc8TnsinZdyuXuYY
a1DgTN9tL4dfQAb6ensHEENIIoMtlTouZsL3p1PxxHnKXZ4Lv31/Nno93Zyp
N4cXk8kVL0siY9EZUkCidoVCkdnhRqE0/fvfvlxdrJ6fn59+/txQa5QaJV+m
SM13ahep6aTDWnOkR11Lk/Mfvnz8crbTurte/+1/fLn78Nt/fFtenjnfbpw8
HHx68+Ht6+sQENLHfLWT7auHuXZn8nVn7WS2+cv7L19efvmy0nmK5OHhONYQ
bfBnhIKBgxO5Vg4e1geDIulYCkNI7yFTxclowORKMqhcjlZMxBrtzbP9DWxf
X293bz8KAaMIhD6HeTqbOd5sRpe2C1F3s/jq4XRys72x3vm8cr6e3AwCMqWc
xeYbdOZysxgpj6fnD+b//Nd/f/9x5eI/v317935SBkg0CsAApBsb62etzYWE
K+go5tJL2dbXP//2r+2t1cd357/+z//97eO3b78uz83udeb3fv3t65d/vr+5
8al9Mr9/7eHk1d3N2duTj/Nn86XHj//jz8+f3799vQ/rw+IgQwQ4vJ8hINhk
XSw6z0Shk/r7oHA5n06D9hOIoel6acYzDZCwYh7ExODyJw/W11kvwAH29IN4
ShIKI57E8vBsIZS3JZbG4zF76dOvnXZnv70183hw+ttSZnnEIpLTRAbAoo56
k+cPsXg6vfCvf/zfd9/eHP/tH7+//VASKBUarV8jTi1fPL67n92uqoPu8cTs
7Mjpt1//+LOzc/j2zf3f/+Nff//Xv/76x/p042Jv+uCPb19/+/Pd1ZVVDkid
noPHD+8ej17f3Hw+2pub3f/y9//vn19/+fXjH6g+prwLRhhEM2noQRJcpP1v
Qg2yC/YCM9RNFrCF2J4X2JF4I+Yw5UhDIEHaHG66f3rvaIUw0AcbgCCgSCSG
5Rlxb5ZtS05neuP1/xoZL40W33+52V3bXDvavX+1921vaa1gY7E4gF7jNGUm
sjuP9cXp9vk/3/7t8+evD7/+85cPb8P6sFnj1MhEo7cfvrzf37ktW9zJuanG
1MTxh7cf3m2sn7w6uf3125//+d//8Z9ft7eXDvdqnQ+vH1+/Oj090gNintW6
dXt7f/Ly5nzv8uZkcX7r4dObz1+//Hr7DwxWiIcOIWFcK26ACv/B67RlNENQ
mvxnAmGQw+3p7SKyEHK1iyEWOOU8isDm7zerPPOTk8znL/r7oeCZCDyrsFTb
W77eNznlCn0udzaeWXz74Zfzo+Pj+/ePj61OPBVr2v0GqdZkMPnmaxvNXOf2
/PzT2/U37z9/+/Xr13enJxGrVWeS8kTC+uX1m7fvbl+/nLaVmkublYVXr64f
P1zuNk/u7l4+PL6///XPx+2LvbPz887Z6cnD3vzurlKkMfqdy2fnD6/uzva2
dl7e7m0cvr98e//r33//8ncu10Ltfd4FUHqNTOoAnhJNBhhKh9rfw8UNPKXT
u3sQSLSWZ4nlQ5gA+1kP1quNCWSd5iyxuw8cYD+I2CRibrG5dHTisY9zAVNy
Zetwaffu1beLr7eff3v15dNJY6KWOIjb7bpgzqV1xafr00vray8fvl3uv117
/fmX379eHa5HNK6IWisWGqdO7u7fPDz+ejXWmSlv7WwtX928e/X6cPfg5v56
7/To6vjy7vh8d2/v8mxvd/dgd318s2O1+A2F3Mr+4c3Vaftgp7b7+Ng5ff/y
4vbu7vH+vUxFo7EpSLP2KcLk6ZcRzCY4a1QkBXpjin6DkEd71gch4Sic0XrL
ZiVCoBCosLbeXF8dHQLH1w3qLAJBxVeOTtp79WDLzhteCq9sjXxY/fjrx3/8
+u6PL+++vn2Ys6zOVAv1fHLKsmiWWzyJeH27tdl5ebGwfPLw+R9f315ebaR8
NofK7dQni8vnKy9fnn/YPdoaXb3Zvj3ePDg7Pj29uzy+vD3avvqwt3Vx+/1b
9+2dvd3t2cXV1nzDl0qZx6sLq2e3rd39o5nW8t7u3vn9Q2d39WBj/ZovJw/K
eqkszAu6S6jnMVBdQzaNM0Fl4kc1owWAQObzkV2MqLdaVvhNAzg+HhGeLK8v
Joaedj1/0d0zgEARiSPNcmzEOecL0cwVk6WVa+R2P/3tb2/fvbt7fL3wfqo0
36h2VlearVGDzuo2mRLTc1uXp7vHJ3uXH7+8un/96rKTLkUDYPvahytrO4d3
N6/f31x0GnOTm8fHB/ube3un9493ZzcnezdXx2fn95cnV7fLy/s7rcWrncn6
5MREJVkcm2wc3S22Lppru6tXe4+nny6XOtu7nfPX5GdwGrqbxxoURV1MAEdC
9mL1cIlBSCOzE56oXMTActj0YR0r57UY4iIBg24ppPTpcAHy9Omz3v5BKASO
RiQWJmWcsL1ZFNrtS+3K2Wrn9PLzh18+f/r4tzeHj+uj1fH49t7qwtrVScWf
rVbHmpM7a/dbB1++/b9Pr365ub3sLFTak5FUIOLNZxf3j4+vX36+3txqtMbX
lhcW11eXlzfWDl7evXzVuTvd3jk6OewcbR2uHq21Fuaq9bHRRm1sYrrVnm3v
Xu9sLq+sH14+Prx5dXRwc7V9dHoLM6uwKLbOb/dY+Xg0jUGiwaOyiErEoSps
UiU2peAyaXKVmidzqGUqlxIzCDclPMFAAv70x58H4N8v8MFhnZvnF42a2qGV
ir3u6vLx49tXZ1fv/vjtz99/+Xy/c3nRCFbrm5uLs53rjemT9yub13dXJ5fv
P/z+9c2nVw8HxxtzYN4ZjQwPR/JjoYn9lb256uzqzNzE2MzU1FR1ZKLRXgMz
4uvD85Pr3c7O0fnWzs7uxe719vra1GZ9YrK+sLAyv9Kaa+9tHqxuHK23D487
Owvbr69uL48uz1hShY2L+9nmFfNZChRKBu9jk2RKMl8qU5JkHJWUI2ZovWyC
kGRUIAdhbCKaTiLqqYYE7Kcffu7uedHTP4AnOTor12ValWFxM4rL2/dX67W3
j7fvv33+dP/nP+5v7teLcwuGyF5zaffqpHz7avf04vrh4frXP/7vn58e37+8
er0zt9SsTeTz5cmxYq44s7WYipfLxfnKaCaRzhcTmYmZ1trO3t7W/kFnfXtn
8/rgeGv3YHVnY2N1vjUPZuHZudnZ1urK2vruxd7+wcHc6s7+wdH6zunyyvb9
IwbJwKNxchOXjiXJocphKC5GVjH7GLSBoYE+hN3GQVH1GgkMEDOZVCaX72Dh
eUghXRqCgOv34llXHwSKgllX27tFV6sVak/snZw9/vLyzZtXr357c3Hx9c+v
v7y9P5lpLIKfqr2wcXF9u756cv3m9eu3j/e//P7+85vXH169uV5eWZ1anJuo
zc2O5Sb2LhoT1fJIZbxa8Fsc3kQ0XZ2aBJdwubWyvre9trV1eLrVabfBJa9P
1qam6uXp8VIhV29MT01Ulubay/mZ5tbh+dXeUnt/t3PywKZJB5hMnowtJWGG
YALRIE1u49JEbB4a14vGI2JRmslpwgwSmEoSAovr1RIJOLZBGQpBXnR19XZ1
f//+HS5fbRycXE3ZRmulrYPD19eff/t+L+yvX//xv/788+u368Od8kRzvjEx
U5zf3J/LHR3cf/zXb+8+vwXx4s3nL+/fvn25vr68CHrq/OzMVPPwcGdhsbHQ
mMiHA1qpyu2NJjKj+ZFqo9nYWF5qrXa2ltfnZxemZsdq1VyqEB5OpTOxbKk8
ns2USqVKrTAxNr/emFtbau/sLLd2YAxMFxvVy4Xj0SLij8+esCloHpLJgpHR
A3BUryAv+C/0YTVDJicNkXg/EzliSTcAY6qy3J4XL37uAvMRBIGDEee2U/Fz
mWRXUxlZWL95eP366uWrtx/+3//58+8gZNztbtaGp0aGY4XC1MzM+s7awsnB
+cubV+8fX3+9fvv19u4DGOyak9OVyvh0ud7aOjpaaILaMTtsSesFMrnR7Qwn
8sPR0XR9aW1qYmGhMbu9UZ+bmZko5cOxuM1hMHn8gUgikRwdKY8m8rVqPp2Z
3trcrM6vTWemKEMkKv4pHM0m9NCeI/BDdByf+ALXB0NBeoYGnzJDBKpMapRT
6DghAvlTL26wF4olMVxGE7f/54GuARQOTUChkDM7pbnNhrOj8BVGptdvT086
B0cPj7/9/v6Xm/Wb1vbszEg85vYG45ny3MH6Qm19fh+MNvevzh7Pz0D3fn/z
uNmqNidGx8r57MLuznprr9MYrscCEadKJrN9/12SSCqRG5uor0xWatONxbnW
0kxpajIbDwW0ZrtRq7I5fQFfMBLKJZOpQhAMxtliZSrnT0edIc7zJ/0Ae6i/
9+kzBI70oqd7oPsZGUoQQQaRuJ4hAV2oZiMkOhoW3YMY6ulHQ9ADP+NFSloY
xsV1P4OQSTgqhjiU2rmort1ujY1WUunC/GZ7dvpm9+Dq+OOb9cvO7GT9ZHLY
bnbq7eFwstba3a5NNDZPHx5vz7bevH149f7T0fnuwcrUbLU8mk77fYVmc2tt
OBnMZYPOuFOsMxitDrcrlE2VJsbG8vFStjBdzE9ksuWpgi9kN5pUGqlG5Tba
DJ6o3+FKJ1NOg8YdzfqDoN9YjW4IGQkTKqi9Pz3p6u/ufgLp6R6iS0RMRN/g
4EBvH94iYuGpQjIf1dUFQ3QReBDKIAaGo6PjcDIJ1ksgD6JoGCKEv3YanQ7o
VPO7eY0vVp+tgmTdeXN0+u18bXxlvbWWThscHr3B4YsVRmYXlwulqcryzmHn
7PFsYflhstLZWlmsT0XLuaTDpjeHJmczyagvmApGnE6dSKJUun0uizsyWsrk
U/HhaDYbdwVD6Vg+GPcGnAqrWiBS250Oo8nltH3fLTniM7tTflss4/HYLA5Y
Xw8ZCxv6+ccnP3Q9g6AF0EEKXGTvhaJY+N5BnN7IG0RDnj8feN7d092HlJDA
sN9LINGFOTiVhAXrE4kmIPFw4tTm8V6j1dYvjliUoUp9/+J2a/v89sM/7y/3
trZO2olcJeywqi22cDYXzU3OViaqrfXNlc2j1mymNDox35jfmnGlqz5bMChV
hEfK8Wo65PaHnR53QsBXSQx6j0VnCsbyY5lkPOpO+fSueCScjrg8LqvTr9Ao
bEaDVmVwmHwms8fqsMrcDnPUbvc6gl73YN+Lvt5/7+7t+ssPT4ckCuwQvB/D
U/J4P/djyQMErZDxBM3A9T/rxg3Bu2BwxsAAhYqSCNjGfjgc/3SIQqYRMGhk
l+18rD2TOY45Q2aFPV3YPgOVfHF19/sF4BcvF0Yb0+MVl5Mvd4QDSY8mUSgu
L6+DhjDRWpipzizX2qtz442JdNKitgBJrzdQyOUzToun6Iz5Ej6WRB2wm02A
ymH1J4vFRNiaN8g1gZDOG4rYrLZIwKDUuOV6s0jh1mgUFhmglCgddHXYqTca
FWplf3cPEv5T3/O//PCXbiQEjx/EwKEItorUDe0awogYcgUOhiNAnw4+fT7Y
PwR72j+IpXItEiL8+YsXfT29CAwWh0PB+smxqMlbn58vetQKcXSsBirA/MTS
xetfrt5sLbamFhfS416VT2MHWT8KdlI2MV+qzk+WMo1avlEenysk61Nz0YTc
6DPETO7R9PpIohBKhUN+my8ilzjMWo1GKFQozbmEO+KJR/0poyUT8uY9Jqs7
4AiZ+VKJWqqyyjVKp1gRUctTKqlcZzUCarFR99N//aFv6MWTn548edILigpm
oE/eg4dDsYQXP/RiKVQ2l4LrxsCfQ1FoJn+AQ8AQsM/YQiSV3/XTD09edEHQ
BCIWCYGKsMO+0lxi5aJqVykcoE7XJsaWFy8+3p+d7qxvrp9uN1Mup0Ev8+Sz
sez0iNngt9hHi8Vqq+KdHIknYhaNLuz1j+Tk3/cit5lL7ZVGbaZoM9sNKhFf
ppRqBFK2UGR2etOlXCUZiqe/r6wvkzAGnGaj0mri6YwimULnDKWNJr3DaNHQ
yQKRRMzTabv+7cdnAz1Pn4A0giCzBoYgECufiSFRXvz0l14EhdCP74N29SHh
HDGTLMYMELFCIUYq5nP5vc/+8uPPXUNwLAqPRg4QBoBEaswxMT2r1QP8aDIa
spUry7t3ly8XG2eHncvNRj0oZYpwsXrFbHWEtLqgRmHNppIlr6w970tGDT5r
eHRyOuAUU7giudCQq1dGamWfK24w6ZVSpc2s0pCpTJBvA+mJajFi0wQC/oDJ
79L7jVanChDbNRaRUmNTGwxCiUFhtVuFZDyXIw2o9IOIIWTfD3/5Ed7znIyh
opBUElsIekVPVz8UtAjUC1A4+1A4DFnM5rJxfYNoskptkIhFxCHok7/82DPY
j0ARqBhIN5JuTDol5ZZKYRZrAnl3ODJSmQazwG1zcX9v7bBazjgZHLlESjQk
7T6DQet2OqVqmyJRml4/KESzU2OFxaWxaDlvFLG5ZkemGotOpMqpeMxhMDik
Mp9Ba1Rp9GSm2OlM5b02k9aoczitLrvBpjDqxTK9USg2CQEtXyVWS8UyV0in
EbEAsZgjM3Y96x4a6IH9DMGRoVCGWIp83ovo+6nryU/dUEx319OnLwb7uhFI
6nOhTMAiU4nsISKXb5bQhp4+/8tPP3X19w4ikQQ0VWJKB3zp1sT8ZCFolGqK
hXy2vNqc39nrrB9OdZodMKVFVHy1hoaVGgx6Bdcml6vcmeTY5MT2aiPtG56Y
bV+0pqasVodCLzf5PV6fxZYphUCH90X9ErVMblCpFQCaLTMYZIDOalHp9W47
2M42q1VoUklFZAFLLhTbTAqqUsYVar1itUjoVvHYLAnkORhUIQNdWBJHSOeL
GfBnT9Eo9GD3Dz8++bmXAsGBFduHpQ9hFHKqBNKD4AygGEwOUTn4X//t3588
edbTC0HCoURWwDfTSE00ErmWW25mKI35xalWG+SQ7bWp4txppbY+NpG0iehC
rU6gtMroXDlFbrGHohO14clxk5WfPHjYfXN9NJULB0MupwX82EqvWZdLWEcV
rozKouMCUhaDL+EpQOXUJYMmk1aq1mkcEZdZphQZbBwRm8lXiCVGQCASysQK
g1kuEqh1aqZYqkIh+3t/GEIh+tWBgEHAonTjGTgibWAA/f3HzJ92I7p7h/qQ
fBKPj8STSEgUDAulDtEUjB+f//u//ftP3WDtoqBQMl08PNucWGyO5IsZm5os
MMQmyqPzjeWNnaWlqcVGa3Z6bnRUr1TRAaZJJeGIhWyBRKzMxevTxcmiyyyP
nu8fXW3tzU+nYn6PUaWwO+yOgH+0ko7aPOGgU05UKUxqvU2o0SrszmzIbPVa
rSIpKJkyuYDFEWiNPLVGqdaZ3DwWW60x69Q2Hk8j0CXCQg52EPnsCWyILkYz
eSQYE4ml0FE9z1E6AhLR191FIHZ190HRVLaYxaRAIaCWDnU/R1is6L6un39+
+nNPHwKOwuMRCKo3NzNRLDbGx2vjAQnTGknEc6Orr3ZWlipLe1ud5cV6wWvQ
8rSgs0h0BofaFmOr41PxcqFR1DltqcXh2kS0srxXDujkHisgt3liSp3dGjB7
huOjTqeSp1VwxVKNWKQAZEqjRi53m6UAF+CrBRyBUkISSxmAkMOk6qxgnSqd
fDZPabSZZOmSTOzC9z3/8SmcpNKx6UgKnozBwpDwZz1YDhUFwSCeQeRYMgPT
TxTgMLgXQ88h0MEBApwMmLG4vp4XPz7rguL6MWgKQUzLzM4vLy6Vp5vLFU9E
5bSbPeFSbWp5dWvz9Ghnc2R0MmyPBrhKkVIdMSvNMpnEPlYujVWnsqlqeryS
DVoz8/XF8ZRLJM2GlHoj4DX4koawJZOPJwOpqE7FwwqkUrFYJPcAepsuGHDb
7FKlSEpjs4k8OpfL4NFIDInUqKFzCEYWka61xZX8oEIatCOQuKFBtCpoVssU
AAfRO4CmQfpwZBJyoHugrwvBQkKhEBZciKB29aIGeuFwJJLFkQf0LEzPAOQ5
qLJEEoXFl2pci4udw7XV6sxsbrGsVvn9Lq0mlpqcmNh7ONm6n0+ODydiOrWE
pdNJtHqnSWLOldP5QKY+vrM+Ww6O+Cxh72zKm0jrNaZMVMhTq5xuvyZXGckv
1YvliMWhFer5TJ5Eb9QCYq09KTHqxGqAp9KrVRyhSGlRcNhEoQrgKnh0poiD
57GMfK1KQ+P4/HAGhYBnmyg0npiGxA49RZJoz5EUDO15909PegfJROIgspeI
RVG4Mia393kvDIbHcuyAyYoZGBpCw2EQEpYKIjhQmmhvdkAqO9k5WYg55E4h
4Db409X0zM5y+3S3qA28unWB5+lFFhbbFLLo5TZfvjRWma0XdSq52eoOufKF
WDgxqvPn3B6eza0OGI2ubDI5UqmUJzN2f8qjEkmkJoDF4wNit5qt0VjA4qSz
eCIpByeU2+Q0JpPMk/AEBLqMrddIbDq31WTgy+M9RCqeKiP19SOIoMPju9Wk
54MkAh2L/Hnwp65nMNQgiY6AgVNHAASUrkFIP4KKYQv5Ui0OOfAjhIHtQzII
RAZNnSrWptfXlxaWOotzFbfVwqPqPdnAVH14KjsyWS+HZyvzG5GEhS2UKWg2
PVXu8IbKtYX52WbISlfIOCZlNFhMjMyO5eYqVo9CbbRmCka7xxkslir1+bQz
5gcENJmFy6NR+Bq5FyCR+HopCYWiMKgUFlfGpVJQBBSBxSFQRFy5ElBQ3U63
1Vc0K3UvBmkEshg5RMPwoUODSAhLJUHDaUw2A4ofevLvPz7/eQhNwTJIRKLX
Sh9A4FkQJN1hZpPJfEhfH4yFgDEkbCxDocuOliaWV5c3tjrtVtHn4Itl7ngB
7LCpWsFgCk1OLB80FgpuL4PG0mjZcplOa/YOV0MpX6PokfA1Zk82Up/LjDfm
Z0bSudCwJRL2p9xWsztZaSyO1wq5YStfKNayCEwlUyAXW8UMBksnoIJ0T6di
8AQhAYam4CgCIhlPU0iteolGZDSZFQ4zl6WFIrlcGnGoZwBO6O+FwBFUg1aM
FrFlJEz/wDMwEQ7CMVQch/qCCugkg4NQEgYnAakU1o/o74HAsHgSBU2jkXX6
1F5zerV5dn2/c7WeHU6EdD67s1ydGG+k8yHTzMb85tLaVCYkl/KoSo1ErlSo
ndWFqbzfN1wuBAPZTDhfnNiYLK4vluujY+l82uxxRpI+RzCSKo2MRHWBkMfK
EUpEEoMOYNO4eiKVjROLWRQFC4vEUBE4BhbBp0MQBEw/hacD+FaTxG41yJ0q
OkeOYzM1MszQTxjMIGaIQOll8CTi73cC0NA/DcCQmCHIIAR8NRGaDJL2EAqG
ZrHYTCKfQ4eh4L1QMoUiovAEAokq05xb6jTXNs/OFiqFiBUw6OKJzGyqsjqT
8lpyyfxCo1UeyeplUpFMpLOrhZaRkcJkse5JzRRG5tY2xtbOFseXp+u5yXY2
kE0UAmZrMuDR63Q+X6pacLutWqNMQOHyTRwlBUfgcylMLI3NY5GwDAKYYOhU
Gk/IEEhRRAxDbVaZAa7Y4o07Ag4al42iM3gCKgo9hEfQid93hJXpVBw8AtaP
HBhCMcm9GAKOxFMohRKdTsDn4XqRRCJLxEVzxDQ0kkrA0kig8tDFimi90Vzs
TM+fTfgyMbOexQIASzBaH42NFyt1sNFWzlqV8LCLo5e5TXKFXhvJTY+XZ5IT
o74AGOibS6Xx0tqr/bGp8mwlNRwaKYT9Ab/JYJNofdVsIJYwusxmIYfBYPDE
JC6Wz+MySGiaVAnCModEI+PwUDIVHDWTSBKIrQoAz1Ub3EZ3EMQZCYWklVLQ
T6l8LJQMGiNf4PSZKOiebjhpAKRpIRxPZHA4CplKIZICbKEUByXQ6AwBi4Qh
IFAUKIxMoNGoNLpau1jKjiwX5iYjmURwWMan0xS+UGipmBwP2Cqlmd3t1fkx
h9kkUuikGodO47YmCsPj5cZkvbay1+hsLq8vHJ8uzM5vtKbmxuKuUj7i9xlN
Jp1S40onvYFMOeByqThcoVDAYolIHLlGTuFxZRyFjs+gEXFoPokslJHpAInK
BjR8Osus17r5QMggk5uwdCaO0PXTUwhVzn3BxlN5lpAMQaFAe6FQKLYfj8aR
OVKhnCVhMWUqKYfPIyOI4ItZ+XguCYVFoRkUGpdJ5qqtE4XV29Xp9nxj1m+N
cyVUms6TCORbI7n1yVoBZLXqciMctNpFBjkQtLC49ngGTO5ra6trrfmp3dt3
tycHB6s7K9Xa4lQhHkzEYm69TGTWc1SGdNBudgR9WpOMQiGB5iTlkhgCEMeY
RA7fJFIK6HQaha7iCSVsKZLMlBp0Io4WkDilVGXcKmA6MFIiEvPsL3ACUSMi
KUV8kcyqIGKxaDiyrxcxNNiLY9AZXBaKSGHrQQljkXB4iVDMYNMZDDSoPHg+
DsEWsNkC68jS3u7m0cNmq+TXe3h8FWC26bX2aHBs0lT0JS/v1luL2YgDIMk1
XKNBr3PZC+sbzdmpuanF3bOz9/efrzYXD27XmjNz08W8y++2ed1WiZoD6HRW
F0gw6RCoiABHymAxSRQmg8Njc8CK4zo1OhadKmXjBQylmMJCK8QKrUEuBcQC
hZGttoM2aaHQWbgeCqyHDHYUT8qVssw+GQFOIYthQwQYtAdBJIpYXBqOgBey
WUKjEM9SqQVyqUbKZMIG8XwmnYQjcPkCsWl0bmalub67kK6k/P5gCuRhlkzp
dYez06uN+vKrs5ftWtWpEcvNGoFYyOVrHJ5aaXqpvd+5vtxev3h8dbm9d7S6
sDzbrGbT0WG/NmCTi4wGI2AValPBvMelNykMFi2XAuYcGdgoXBwPwPBcTglD
wBNxsVQuwAUFBlCKlVK+WmkwCRUauVrjDaiYVDqdoyDiOBoRR6Fl0dmAmoMk
kfk0GgKKRmH5fPB0DovDBTR0vsgBSLl2IdMskmvoVjmRwqGB2srhiARSfaow
WRmfmJqpz1aTcW8iY2fTVMb0xHhl86Qx17g4OpjzOvwyMciQXICNBUXanJlb
3tq5PD3fWdg92G1tzB6uxgoTi63ccD0f8zrMZrmELpEbzVKl22vyenxuq9co
ESoBgdCkZPDkTL6UKdBZVRwNSBtMOofP4kvkPAGLpxACep1JwJZJtJ6kJ4hT
mgR8pViiUTNYMqNcJAS4aByTbeNievpwOAGXzSJxuWBXK+g0idHndfBZYi4H
RxTg6TweDo8j4UksoVAsk7rG6vVaudVZbq6Uy6PJmWGZ0R/NtPYqM0urU6WD
i7VSKZ9V8Vkg6nF4ajlgcIfTs8sTrdn13dXO6tz01MrKpC9Xq1QyrmRmOGIx
mkRy6Xfw4oJeYw1GvJZgOhx2mGhMjkai9tvMoOoBIrnLpNSoeXS6gC0SyGgM
A5ei5HF9ZrsOAJQSW1AdE9jBqQq6Qfxh01l8Fl2k4eBwSggBikHD6AwqmUDE
EKkQPJkkUYmMHoVFxtGykXSlm4YDFRQLw6BoFC4HDJXm6tLUWHsbVIz1iicw
VZl2O1Pjm/sb1VlQJVcerk5mj7dGEiWHScLhCPVavdWTTmYLM5Xm6sbMztx6
e6E5l6nWhmOjrfpYMhj2+Txg+yrlCqtaIVFm4+mI056IBWxmCkdiUmoBodik
UgF6o1GlMsrobM73jpeD7q/jynluq8upk4sZHGXQ4CpNF7LFlk/GAJ2SgGb7
dAQoGUkmkJ7gcTAUi0HDweAQrIDPxghsLncypWGqDFQqW4oHvVWAo1IxpH40
ny8V85TJUm1ydam5NFOdqNVGxjaKLl+jnZirZOuj6Z2L404bPNqtpFNjNAhc
DqXDaffZs/XkyGy93J5uZUc3FqpztZHscHaskosHY35nyGYAlHK1lKcS20aT
sbDbm3B6DSaZUgGoFGwJKD0ihTFgMuuFJI4QkMoYWr1eIuJI+WYtoJbQNAqh
Sh83j9WziYQN4FAJKDhVr+JLSCg8FEnEQMADQaBzOBgCDAu6tVaqM/u0hZhQ
g8AJxTS6SEnii4h4FJTG5ItEIq4sDKJIdWlh3GMrTVXcmaJfzQ+lCusRX96u
L63WF8dWHjdmSx69P5T0hnwqC6DUBKOxaL6UL9WaM6Pl6tpSLVGMWjPT1fJI
yRXTuY2gvhh1gEDJM+THCsPWfD4Yc7pUKqFcCWq4UK3Ua7iAzWlWSMTgIQe0
ErdSwdTruXqLzMnjKDVOWdKrt4OLbuBS8Rg6k6OQUphcDr4fTsbioXgUDM8g
4KlMPJ3O1SlsTq3XVRp1K6RcLovMJDCYYgIOTiKD7clnS6QCS7k4nqnPzcyP
lObL0VwuKEBzfRPldMKf9diL1bF6babZmGzkQmG/1ZEy6E1awBjwOhOpbAKE
nGqxVJurjlfdCfCPmXhA79NZtEaTxag3SuweW7KYSRQro+OhhN+lsQJSgC/i
87UWrUpnsGoNOomICRoGiw+YHByHhkoWS00y3vcrgu16ryaXd6tJZIpYxNZ+
HwWAh2OITBoFRsBgKHwSikcnYYUSHltnduSKea9LK9LxqWQ6Uc8FiHgonAMn
i0F9ZXIl7uFkPrM01xrPjp109lbTagLbEMykgpHxxHQ6WQ5pspvbtZmRsDcs
9Dp1KpNKZ3ba3YnhhD0xlknFUuliLpcuRjOpyYLRWoimvTaX1W1SicwOlzdV
zRYWxsulWMxrU6jFYjPA5ylVOqNdKtSqwbGIJDwmk8PURc0avx6UWKFGItHK
hK6wx+0ejoJ5R0ql4LkcgoQjCzApUhaYcgk4HAHLA8UUi8HxeN/voTIEKqlo
wKdmYTBDKI6ATSSTKfghJJZLofK4dAHAUySys5Fio5pfa120xxRyliofTS/O
V2LxqeGsIpCfby1WIh6j3+y3GmQahcJuUqgi4UQmPxyKZTLRUW8sbPPFRwth
oz7qLib8TlPELmHprdZAopSr1GeK+XQybrUYZHyzVKuSqnUmQKmQy112JcCR
ycUmscVitJnNZitPahIDOhnfaFCB0+mQ6lgYNq4fTsMyWKA80jhYEoWCw8Fx
WDIP9SMcS2ZSlD6jTA5aZ27Ew6IxuTglC03jEDAULpTDIZJwYKymUJmmSL08
XJydTVSze8sxo1YIGHMTG9dTE7Wx2Ih7ZGysnI/FzVav3xPRm02AUGGUOwIj
o8mIw+5z+6ZKoZDKFHLF0uWgLRkczkYCXpMLMGptDn9qpD5SmiilUvlgwm0T
8SVKKQh6CrPTZDbY3C6/jitUCAQ6j0Kh0Sq1PI7NqNZarYAlobV4nComYxAD
oHuRUizPqJVh2VIcqacHPkigE9FDfTgxa3CIJpeLNXQJS2Uw+a06bVAsUJNZ
YhaWKEawWFQUkUDnakQKi6EaK5XjSxPp5f3JgEmmEPKCG4+vmgulWHV2LFgc
q3j9FoMrFTAG/W49iyEG9HpLKh6z+swGazgccdtMfpe1ODYcTGXz5TiY+hwW
q9vujgT8+WJqujKSTGRGygGnjM1WAS6pxu5wCk1CrVFtDgJyi4yn0ccDFotB
SgD1UwNYrVK1TGM0y1A4Ik1IxiF7kQi2UKARMvFQCBHegyNAsHgIlABDUfBY
MgnwO6VasU+b9LpsQgbbDgASGnEQKyTRODQckceX6wS2Ui1fnShmp8e3jhem
AcBOk42f7lYaG8WYdyQ5PB4KRTOjqWGP1RP2aHhkOgkwAyYzKJQ2vVDkcIct
Vm8kVi3lK5laND6cSYWtVlBE7W6vz25zxcZnKuCiDifDNhGNqpRpFTq9E9RN
lUGtVpnEUqlMJgURxy7XymVMAWAQSI0amcWsFcAQeCKbgmTCe2AYAopIZ3EI
SDIVhUJQsDgcAg6DQElIPEtmcuvVSU/MGXJZyGKJ1GKMankMpoTLJtIpRDoX
BHi5OTk8lslno7nRxbVG2u/VuW2u8VZrolaYyMdc5WgczHaFZMDr8Bh8Zi6D
QgLb3WRQaLVmqd5oszgMMlOkUIzls/HxSDwdj/m9gaTFabSFQnalKzXazCby
6Xgq5DcI2FyBTCkEPDq1XGHk6pwGG08CqPROo8OiU7jsXJlED2jVVmlARyXK
GYMEGpqMZVCgSAqCK6JJARKL1gdDwQb6oHQKnUIl8/lkptKuMdoKNXfQpwOs
2UTZ47OIImkFEeRSBpNIE2DZQo41ZdEn7PlyYmS7PF332Q1uQyKdT9eK+Yw+
XAplwon0cCkWcFjlZi2NRmQpjWyVUy43WMwSidHkMBvS+dxwPJUKjkYySVvU
b8/ZPUFNzOCxi3zJsZFEaiTojYTybpVYIeTLZQq1VKtW6gRgYJYCIhA9LbaA
26I1WfUAHwDLVm/Rach0PoHCwEsZA2xwQjlUkYghE+KZor5BNnEAQpaDxEin
EuBojt1uS9rB9/BYc1F/JBSP1sAHh06XMzkyJoPGpYKTqgrZVO5AduLwbmW2
MTpidLIsllhpZKGQibmzIbvb46kU/FGbXS0BW4PNowilLLbEJAIAMVcrZqm9
lpFENpP3h7webzId9/rBfGBxu30Gt98dCIVDhXiukAk4LA6bzmMyyelcCVdt
s+sUDMCsUauFQnCOXKG4U+e2yr/jmsCpM1koKCqNQIIzkUIOkc0l6qQsvpCO
R+NJ6O+73IM0y2FiyByZROkOhkfHUumAXgFY4+64uzQznhWKpGQlCculk/BU
Pp9D5YlVAFcyPAcy81Zxcixtt/vtrlAqWq6GPGWTUGONeT0evw5QClQmHVfK
IdOZXKWaywbkSq1Gr3a6hzOR0LBdYzf74/64xRs2cx0eh09nVpoCNkt4OORy
e0BRNTgceh0D9GSZUmUy2GVCuc6m1klVfKU94o5kAx6TCjBK1RzQPsIaCo7H
JcEwMBicLBLxwZoFExOLj6cjCFIeHkOmUAC+AjxX7/CFSxFXxih3ayVGm0Mb
SOX8NAUBq2ARmQwmHZRnMVgzYoPaUaksXp1u1tvNctBh1cerrXjE649q6WqH
MekP2QGNSMaRiKVcHqBgMmRaJocrlUolgEJjcCSG/WGPwSgzeryOgM1pHLVb
HS6wy0SGpMcN0pw/EwomAZvdZHTI9Uapyuq2KBRciUYDpgW1SipQ+b32tFFr
V8s1OotFozTaCXQCl8tlUCE9GDRLROcDMiGFBCewCQQw+/CgOAGNQGGxGVKH
x2yKlVNpszuiNrCY6khqpFVOmCkUpYLGY4n4Mi6IoXw+ABiy482lxaWR+ZmR
jMtpNVr8ZXvQHPUqeQq/y2Q28yQmDpPDFqrBctbRGXIRVy8H7ZjhkIFaGk/E
Y5GsRaYPqg1227DaGXQHfFYQIB2prN8RDyRGov6wzW/3msAhmVxGrdWiBngC
oVWtNwF8FUer1Ln9Wp1VCyiloAUaDTYun06n4OHIwQGiiCTgSLgcLpv7Hc2w
iAEYo7+fy0TQRCIh32YzhcJTpWw4aBEKWSxvwFot5bxGsBQ0JLGIK+DouGwJ
XyQRi52lSH55sbQwNWpLZlxmS8rrHHHrlTwqRWO2OwG+Tihm0aQiqQosUMF3
eFVIQAlVWM0qrSuWzRjtCpnFYlW4dDIFy2wyO5yu4aDbl435/flwMBv3DodD
MYuZJ5daXWqweZUGo5qrNji8KgBgm40WrdWo0wIqpdJothrcPgZPjCB1wZ+j
ySy5WClRcsgMAZ7AJw08H0QOwKkELIWGZikkWqdWPDw5PV4eM9tociFPZ/eN
F5YKOo9ArmHyuGyZDAzQfIFEzhXpA/GRjcmRWq2UGp91OdzOiD9sFfDYVLVT
bFDRyDK1msthSCJ6I58jNKoEOq1TTVeJ2Hajzh7Pu+3xoMnmsKhMMqlZaZfr
Xa5AxG3xjsbyMYfFl/AU0pmE3SnVqKVeJ8gvoKbYrCqZyaS2Wnlysc5o1ajA
YGXyONweu9HuwJMICDJ0AIrC0sRiOocHUqqAQhFTKLAXcBSbTuHSCXiOxKh2
6aSRyni+POrW8+V0HlWh9VRt0cysT8UC2BIWTcVm80VsiVImFsbHa4v19NxE
abqd0WuUMpXNqOdRREEDlys3idhCo1rIYQg8EplIzJJJuUqNUsey8tmmkD7o
izt8Rp1IZVSJNYBcJddqLS6zK+Q0e4ruQsji9sXj8VAg4LJrPHpbyOn0AWaz
3WLxamVGmUWpVPEVQq1CYZTYYk6VzuF2uxIs5hASjUbjaXQiRyg2stAEEosL
GyJzUc8xpP+/wXLHQRAGAOhJXNUYDYIFIhSt2BYppLRSIaAEP4ORqDEujs4O
XsKTyh3ey3tmp2f0LU1D1pTQWb4Po/u1YXip6SMTJEXDX3WjPDTpd505MMcT
gKCzXOXV7fM+Pr+/x+u0ZQE0Auw5A522X29FxPCAAxdmuNZtN1AAEg/DNoFD
yLNS1Grrz217kRCLopRMaVxVUqxbN8rskG5kfr4Uu7LYZZK5IhNRvlERj+Mk
RTOWcIpbinzp4lBwiiiTSqg/QiRt2g==
"], {{0, 224}, {224, 0}}, {0, 255},
ColorFunction->GrayLevel],
BoxForm`ImageTag[
     "Byte", ColorSpace -> "Grayscale", Interleaving -> None],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{204., Automatic},
ImageSizeRaw->{224, 224},
PlotRange->{{0, 224}, {0, 224}}]\)]
Out[3]=

Performance evaluation

Get a color image:

In[4]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/714be5ed-c9cc-4cc0-8e76-2f0474ec44b2"]

Compare the colorization performed by the net with the ground truth:

In[5]:=
With[{grayscale = ColorConvert[img, "Grayscale"]},
 <|"Input" -> Image[grayscale, ImageSize -> 224], "Prediction" -> Image[netevaluation[grayscale], ImageSize -> 224], "GroundTruth" -> Image[img, ImageSize -> 224]|>
 ]
Out[5]=

Net information

Inspect the number of parameters of all arrays in the net:

In[6]:=
NetInformation[
 NetModel["ColorNet Image Colorization Trained on Places Data"], \
"ArraysElementCounts"]
Out[6]=

Obtain the total number of parameters:

In[7]:=
NetInformation[
 NetModel["ColorNet Image Colorization Trained on Places Data"], \
"ArraysTotalElementCount"]
Out[7]=

Obtain the layer type counts:

In[8]:=
NetInformation[
 NetModel["ColorNet Image Colorization Trained on Places Data"], \
"LayerTypeCounts"]
Out[8]=

Display the summary graphic:

In[9]:=
NetInformation[
 NetModel["ColorNet Image Colorization Trained on Places Data"], \
"SummaryGraphic"]
Out[9]=

Export to MXNet

Export the net into a format that can be opened in MXNet:

In[10]:=
jsonPath = Export[FileNameJoin[{$TemporaryDirectory, "net.json"}], NetModel["ColorNet Image Colorization Trained on Places Data"], "MXNet"]
Out[10]=

Export also creates a net.params file containing parameters:

In[11]:=
paramPath = FileNameJoin[{DirectoryName[jsonPath], "net.params"}]
Out[11]=

Get the size of the parameter file:

In[12]:=
FileByteCount[paramPath]
Out[12]=

The size is similar to the byte count of the resource object:

In[13]:=
ResourceObject[
  "ColorNet Image Colorization Trained on Places Data"]["ByteCount"]
Out[13]=

Represent the MXNet net as a graph:

In[14]:=
Import[jsonPath, {"MXNet", "NodeGraphPlot"}]
Out[14]=

Requirements

Wolfram Language 11.2 (September 2017) or above

Resource History

Reference