ColorNet Image Colorization Trained on ImageNet Competition Data

Colorize a grayscale image

This model is also available through the function ImageColorize in the Wolfram Function Repository

Released in 2016, this net automatically colorizes a grayscale image, exploiting a combination of local and global image features. Local features are extracted in a fully convolutional fashion, while the extraction of global features was developed leveraging the labels of the ImageNet Competition dataset during training.

Number of layers: 62 | Parameter count: 44,457,314 | Trained size: 178 MB |

Training Set Information

Examples

Resource retrieval

Get the pre-trained net:

In[1]:=
NetModel["ColorNet Image Colorization Trained on ImageNet Competition Data"]
Out[1]=

Evaluation function

This net takes a grayscale image as input and outputs the A and B channels in the LAB color space. It needs an evaluation function to merge its output with the luminance of the input:

In[2]:=
netevaluation[img_Image] := Image[Prepend[
   ArrayResample[
    NetModel[
      "ColorNet Image Colorization Trained on ImageNet Competition Data"][img], Prepend[Reverse@ImageDimensions@img, 2]], ImageData[ColorSeparate[img, "L"]]], Interleaving -> False, ColorSpace -> "LAB"]

Basic usage

Colorize a grayscale image using the evaluation function:

In[3]:=
netevaluation[\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJwsvPWfFGfaN7qf991ns9kkSJRAgAAJJMEJwTW4uwcbbIABgrszyPj0SLtL
WZdLl3W1d0/3KBLbZB87u+c9P5w/4lz3PKeBYaSnqy77yl139biqC9tP/q8/
/elPl/8KH7Yfvb780qWjN3cMgy92nb98+tT5E8fXnb9y4tSJS/Oq0NP+8///
Fw6HI9FIwOUO+ENRLOzzur3BKEbi0WgwFqdILByOxoLBUDjo7mxubm53BiI4
RjI0FQn6wzEcJ0gSC0UwnCRwMh5neE5gWTZO0wzHsZwoq4Zh6KqqJTRDtyzL
TFrJpKkrkqQkdMM0NFVTdfQMSeAYlpcSZjKZziQNNSErsigwNEMxgsCzGMaw
rCCyvMDGqVgkHAwGfT4//I3FSSKOYzgWoRiGpRiW4XhRZGn4XgSLU1QcR+GF
Q35vIOgLhGOxaCyKEwRFEXg4SsUZhohFMRzHwjFvW9Ozpy8aOtzBGMWxNBX2
ejx+fzAcI4gYvD6OR+EzmmPjjCDyLBWPQ3I4UdHgoahqQlNVI2noZjqbTpmq
oiiaYSUN0zR0DX6kCCzN0oIkaslkJpdJG7IioVfBYhjFiwIfpxheTChw6hwd
x7BoNBz2BYJ+ry+IE7FILIoKQvOCIMkSJEkRBIGGJzIczVEovEjAFwpBOkIx
VAMWTpIiY1ESPqUgVihRLBbpaHj+uLauucMTxuM8xxBBr9vtdnk8wRhB0yQe
iwbDGBFnOZqWZJHGMZQXkhYVOaEkUJVUzdQ03Uxl0+ZgfVQdCggPLaEokoDS
AdnnZMO0sinLkHiGImJhnz+EQ2SSxLKcpMi8IIscQ5E45D8K5xTBCHTgQDga
xnESKg2ZkhUNXh1KzXMcD7mJwiMWCYYjQZ8fZwWWEUWBg/ODmpAkCYHGoQmx
WMDeUlff3Gp3BmM4RccpIuR1Ol1OhwPihWJR0UgoEMLgwDQryiIVDgYCwUgk
Fmfh7KB+EB/6q+mpdBLi01VZlpXBkqpw7jwL3Y3HoMMh+zr8XJPjsaDP4+p0
+SNxDpUFkpbQ4ORlnmcZhuGZOMfRDATB4KEg9CCGYRTHKSidErSLBFHAoeE3
g4P9F4EqBmO8ooroORILR0OpwaCDKfhxLBxwt9s63F6/P4JBU0NLhgIer99r
t3V6Y/AkaONoBF6JwClekgUcMu/z+LzwbIYTeRlKqMAQQrcaSfinabLACaIo
67oi0nBmBEnh0C0kwUAwqgH9inkdtpaO9k5PiIKGUGBeVejkBCriYMokVkgk
ZGh7hY+FILURNFgUK/ICz8swzdDrLDxLUYIhqBMOz4kScUABmGpRFuJkDDKC
voceOIwltKPLH46GIpBlGIBwMBQM+IKejlabK4Lj0DJQcOgRiqJYnqOg4b0+
Z3u7w+mH9mVg6AFR1EQCKog6SJYBOlgG4pZ4mghGiDgBX6jQODwcHR58POpq
a25qd7q8UUAYBeKC34QI4Vc5KCjUHpJlmskUjCodC/uhWQBFCOgkBG0stBE6
pgLxw/yRBAaIhNMsjIkkQN/GSTwCDRuIAHIgxIlgsVAwGMAoEhUJoguHIWGR
YNDbYWtzBdH3SASYDPQtTDARCfl8Hre9tdVmB9yCX6AQ6siqpsAwor4RBRr1
ImAIDQCNx2kuYVop09QlWUbNKFCYz+Vwuby+MLS4AGVQ0ARDctBo0bwsJwxd
T5qmlUlpIgcYE8UImCJorEFwJAiYZUFGNQfojxFYyBcEbADokTiagkmAaQpC
CBAb9C9MMiBUBJqHIRBuwNeB0GCcfkenG4FoBDBVhI5gaPhtiM7j9nk629ts
tg5vBPLkD2EAQiIMviILLBmHMnGA9ZIoQCARnGElM5XLF3IWQh4YHUARKhYe
zC4AKMSXgNJruiqKEKgkDRYZRZtI6EnLhJlioW5UnI0jIIdqxSgSWlVE6K0C
t0WgPX1hEjAKYhbisXAoGPIHAtDUIfgUgAoOhJMkg9gHhhGGLBbyRykKiur3
B8IheGAUQCUPh4FJDHkcTng4bK2tHQ5vKBJ0O90oQgbmSOEZGroIDg5Fgg8i
w1BxQdStdL6UL6StpA5cqAB/oNgRWiI4FyUYNAMgF8qGsBEhowCII3OcBGAC
3QADh8IGGAYwJHCACAAtoFTIlBdoHceiwSABrUXDN+iIz+0D9Av4AhAcVC5K
QluT0NcA00Cc8Dw86vcD2BFhQOhoKAR8G4boAdgo4JUwisft9jja220tDq8/
4HV2dDo9gRABPSpAfRGPwDlBpCwECP9xkgasnk3Bw9QBhRIoGkWHmskwLYge
QB0kDQA+AKQEQAhQG8NCnAB9OIFQVBAYoH/0g1g4BqRJkPz/cCUdd3sGFQnS
KDFIMS/EI14XnE04HAiESZAlMaAJGFk4G1ASHA0ICZAa8MVI4CdoYOhgfzAA
LAgCgqEwLOgB0opG/B5nZ2tTfVOHy+vuaGu1O1weP84MkhdqCYaD8kcoToBZ
R/2qgIoxkLjREghfFIgTSAKi54C0AfRNwzABjBRDUzgKUQkB7UZhiIQDUYqm
aRgbGDxIvM8TCMLAEDSiuThODmoQisb8LncQ8srRsYDX7fSHI3g0RDJQOIpB
6aKQOOFFxPxxjoUWJ0giBKOLYYg4EcVi0HgEIi0vFCga8NrbWpvrnr5oc7kd
ne2d0LAIC4HFcVRugsJgBKJACkj9ANoB3KtmUoculBH6AxBpKtSWQiiEvgCh
o4hSwtASDAwHHDGKcMwHQ9AO9aFIUGwBfwCO7ui0Oxx2dwAlkwDYAKLyhygC
c3Xa/TjFoKP7Pe4QNCWBxQEvCAYgF8m1CAAQyj+0GdSd+B+MBfEXhhdA7BmC
UkY8drvdDXAb9tqhas3Pn9Z3eDxO+Ka9va0DDoDYJgIkCqIOCh2BlMO044iN
SBZO3lAEaEcB0IeFEeMZIowN0rsC9UXaRAPqp0MBt9PpDQElhX1OGHI3ii/s
cbs6OtFINDe1tNo6HT4C2iwUi/uB2HyxWKijvd0VRiwdjoT8niAeJyjQVxT0
NyhfKganQTDQCAROsAJoxThHgioDqsdDiMVxDARvIABD19rS6Q9FAnZba2Nz
a1Nds90LUNrhcDpgCAODOAzCHI+TkUAQEQMBEp4gMYApnJdFYGYgKDSTMO5I
1sRAMQKfAGmgoQT5Y2oSEQEPAMINcA5aDdoOVFM4GnS4Oto6W5oaG+vr61rb
O4G2AB5ijNfZaXeHgt72ltZObzACSiYUgPJDSkgMBEkMdCvHg6YFiY0xMo1k
eRy1GRA56l4c83tBqUK7eT0Oe2ebrbnVAZThbm9psUEFIZMu+L7T5QE57vH5
QEoF/F7QuSSONFWcQyIYXjSAAhzUvvJg+eClgRYA+KFdYPABjSTUv4aVSuoC
FwtGgoDYDE0C8EcAHeJhLOr3+NxuRxMkFTLbbPO4gXpB0cBsdLj9kPiW5pZO
ZxToA7RMOEogi4H4MkYB0AoowggOHYPD7ACFA/DQAJigc4JAwaBRQQ74oVva
gPPanX4gv9Z2p8fdaevs7Giz2d0w5ABCkAOX2+XyIJ+ClAIgMQll4kks4kdU
jsFsgyKXB+kRxCJwHRgeiJqGcEG3GYOeSkHASNICEsqAKHFeUQRAUvBz4VCg
o62t0+1qa7WBegTlQgudHbYOj99tb2/vAJDD4gDyBAZ8DS6OgP7BAXsAfsGL
gQqBVo1AY0DsFOiPQbkSA/SMIZEDg4WDieqAwFx+v7PN1m53e0BAdnbaPX6A
AOQoAy44GtTVDezjRy4zFojAKQjQKVBW0Fhgg0BjAJ5IMqJBkKcg+OMEom0g
7EGfBRoNqBHQH+g7IYFD5GVQlQIUHMmSoLPNHoqFPe1tTm8EgIPlne1tdp/X
1Qnp9vowEvwp0rkgxkE6gcoBxMeBtxSRwWLAcTA2QAkUgWCUQgocSuJHNEgC
mfEsGXC57KBTQZg2t9lddoAyB1BfGHnfOBkCu9HWWPsC+mSwVUMxwF10FiBi
wmG/GzgHeA1C00A6I0ENsYBRwKOgNSCBNEgu+C7icwHpOBByigjsryZTAKsi
CJMYHgTdS/EM6ekIRKFWQMlAvh6/1+mAeGMYnKSYSPCAl4gSAF8YEo0ZBy3D
AIqDT0CMB4YQThcHCwYCxuFweaGfIb0JRRTjIHigywDO2trsgNQgY1xOP4gm
8FRgqbyQzWeP69pAWYIVCSDrCT2CVAcYjqAfJD5w0aAcQ6YRfD74XgAwkKII
msIYDVwvImkHxAjEASHCfwkQoamkmhDi0PHgCFkgUCIMcpqD8OJATP6QDwRU
jJWQaFBVYFWehQmAKGjASVnlGQlZXjCHcDRoFEDTQeQBhvAB9jucUDEwpyJI
J4iaFiC3VMgb9LuBfV2dnZ5gBApDUsiEQf/UPnja4QARgNiFQfQKtAO/FkE6
CAYZWIlF1gnFCGmlqTB0e7vdHw55YHBJtHSAtBT6CHmQOAAkI2OlQfmAaI2z
OCmY5f4eDUw6CDxQpA6Pd1BqQtimZVnAqoheIRss5BJQBDSqhGaREliwVjDQ
0BOYzwMcBuYeg0M73NCSXlAkoAoh/DiQVMZMcBQy4BEC80V5LWlapjHo3xjc
72iGrnV7cEguBxmBeoAnR76GxAe9RzBKUIPsALJSEZCWAMEII+zvbLN7gyQU
CU0KyFhIPSAL2Hs1ZaYzmWQCKitruVe//+v/+edvWRP0G8sypA/4LoiIVjJz
2VRSk2HaVC2pwsQOHlU0VJkhaSgbSjRPx2VRDLvc7iALyY36/C4n+LxOVxjg
GoxJJEIrJpgyq2hZua5cLtuVz3UVM6aRzhVL6ZSRLhTzaY2gYvGswYVw4Dk5
MbjWgsS3iI5AAIxGwaoiDmKBDiWehUEBFQyy3RMKwIgFkOACp0lLyEsg/a2p
Blq1ApbUu37/v/8F8f3nQBrCZUBP4lBpkgTXrqXSaVOTwb5Ah2mqQKLWgT+Q
ByA8+C4VxWmOJEGkBb3OoJDQFQqIzu3uAA0BxEIg7xAMxJUkzDurZru6SoV8
vpjRGR7gMA72AnLP6FY2nevpLfYVko5njiZbe0w1QDOLCR05BwgUwSAI5MFl
KxKsrYzchADVhbKhBRewoIPCAGhZQVDKIQgFJ5JIgGlKmN3//n/+9d///V+/
9SQVGD4wuYi+BzEoaSYTssTFCZKCmYUmjEUgwjjBAVZCdCQR9fpBWEKpyVAw
JqhJg4243b6gu7OlsRN+Aq0JLOmnDMvkmM52wbDQOoPE80yEIiXIC+aOBt0k
Gi89k++t5NznLl+5VOvCZB1KqKiGCY4BSU4M/AoJWjYM4oxFHhy02eAoAi2K
AO8M0lScCL8D8Ao9ySJTzYgJoE41Wf79n//XH/2lAjQieAGKVUQefJuoGSnL
0GASgLFjvARwCe0WCmNoDQywAWIClHa6QN6EAOxJLgFEK5BBF1iBoKPVHkAI
CehHUVzSklii8/b1GI1ehgVxQscxBmRDPBYADwa0HoKRlKxckrm8p+rojXo3
xtKyBs4OWAEsAiAHjA1YTToO2MohFoTkW6ZpDi4yqqjMMJrQlQnwUqDcBj0N
qFcQdpAKq/z6dVnBwQqAFQPhgaQCgD10P/w2xwCr4eA3gXEZYDyk8CGZLHIk
GChYD85EfGEYFdCBpkzjgUiIiGPAzNE4DU+C1IppQ4y1tj/fV9Xi9YSjYCw8
TrT+AYMZE8l4DNLkaweFESJ5JtDyaOPiQycawOBgtKRraAEKgcL/rOvBvzgi
b0nR9GQqlQajjlbbNBOwUlcHFwyB7kWEhKA1gBgBi5D9VZIpjQgQYAr/x9rF
yShafMIIwVBAklE0QXISGcYUVcQDAbB1PHQ4sEEk4AlRAhMDEkqY0M3APOAl
QkAzQCIUwCB0Ivi4BBdyNly9tLu6pb7Jb29usYGU94aQvAyxXMzr8LGhkL+5
xWF3BexPri9Zs3zDrpqn3qir3YUBkkF1oIYCWj8Ccgd0FcHiQutaEBQECPZQ
1QzT0hUeCXAQqKBhVAHggYfM0CRIVo6GJgSTTYI4jYSwQb/tCULPhOISj4Nq
jYPLZfAwkdAksNrg7RmBBXkR8vv9GCeyMS8Bcw09A6/Lg+wjWFBJ8AAcD3h9
oB0wZ+P9q1U7jp28dPru82etra7WzmZbyAni0wNM5gsQtMfbbne117d1Xjl0
YM2s2ZMXnn9uD9Q9tbkwCVw6EIksqbqRymQzQNogGkDQIF2NlvehcCKaRQHk
AqJ5tGIEgQHOg5nHQEoCDIHOiWOhCLSczxcBGEaL10G/yxOD/IYIMFWhOJhc
gudpYB4AZAJIPQYV8AZISaGDXrScy3OJNFhtFcZA0vQEA0as89nzR/ftAZ+v
/UHNsZPXj2zaefbE3eetbr/X1e7w2gPeQKvb6QJ3FPe1eUF/tzyuvVe9e9v8
8e9P31D93N184+HTx52ECTCAVlp0K5PPZwHPDR3gM2GmUqYFESZhhAZHE5w3
EjCcoAKA0ED4LLjtKIgPNFMk2ApQ7367OwiAQEJpgiG3I0zEo2H4UTiAbE8M
ei+Klv+BaUClxSJBry8OGg9ESDgcjsUzGctIJE0FghRD7Y3Nbc8eXT91q83v
67x9au+mFZs3rNm28djZB622Ok/E0Ql1i/ja3aEWewxUXTQUdNe3vqi9tnvj
0sVjxoydsvuWveXUxftP7jwJqCm0TggDkM1nM5k0GrwEmHcrk0argaYGc0nH
4bSQ4VcAbtHEQqtSZDTgDaJFcA/IXSyM1uM99g4XJbOYx+kOhvwg6jG08BSP
RWkZrQOGA4EIJcg8BcPFgI0NhGlOQP4IpGCEtlKGpKTgqKqGNzy69+j2nXvH
d79wu20nt26YM2XshG8XbD1y4OqLO0/bO4JYGBxw0NfuCIL7AKdP4XTQ0VF/
//6lnctXTpk04aNp6574nxyuufDk0RMimcmgpaYMaINcPlcsFnMQmQX6JIVK
CXApcMBV4DoUqK3Co6VGJNfiVBSmjSXDAS9anvQH0LJWmwcXqZAD7FnI3dDp
9oYwcEzAqQBFNFpCCQvA82BwZTBH4WgUreFS4VAYSionTQEUTyalK8TzyxfO
Xzp76dDGe87O1po1Mz///KMR0+Yv2n3m1JknDmeHD+vEfGGoe8Bpw/CgJ+QF
2YmHwvV3nl8/e3bP8vGfDP968QmX78auvUcvXY5Z6RyElkEfcsVKuae7nE9Z
WfgqDQIFWQcBWRwOiEMzgKUBZxA9g+aloXqAhAGYkfYO0MSujuYmeygeGbzQ
5Glvb27rRBKeAegCeyLSUb+fAlXAgRUUQfpDXzNSQoqHgjjIBcOQiZgAcKAJ
DUc3bz90oubQxr1P6hy3Vkz9cMSIEWNmz166c9PRm7W1tjYX4H/A2xnwej0v
Ov2drS6HZ3DF39HadOfuiR+qln4+btS3O2zBp1vmLFyzrz2bykHVIJx0vtjV
39tTLhcL+UI+m8sYSMcBPIJmgQ+SljTAMmBopRP4TdUVDo+CKAAD6GpqBF9t
szU1tXrAlIKk9TgcnfAVWlyjZHQ5UgIKDEV4VQaUxVg24nV2uiOkYllCOBwH
3WfoUgzjFVNTJMeu9Tv3H9mxe8fVx8/urJ362dCP3/988aotB344eO1eW6sH
tFuz29fhfdJuAyff3NTU1tru8XlcWNDdXHvu3PULuye+N+yzuacj9XvnTl6+
4jHASDqbz6UtM9PV09/bXa50V8pdpVIeQjYBAOLI4IO/ULSkrooMKSQSoD6T
ybTJk6FQwNlSV9f47FlTc0tzSzuytugiZ9TtcIDPGVxLx9HlGbTgIZCUpPA4
zCS4dneH0x8mJCujAcGAndckpN+BfUW9dunShStWrVi7t77+ye6lY996e+gX
8zccOnfjyvWnLd6Ozlirs/0BpO/Jw8dPG9pb6huaWmHum9wERgZsj67er6lZ
O2Xsx18tuEVcWTp/+Yo7ACPpTL4A7WgVewZ6uopdPT1dXVDFfCZfNBUG1Ieo
KKKsG7omI+WVyhXyRcBajYl47U7b8/u3Hzx5/KIeLb16WtpcYEqwgNsNg+KM
ggeFeIBZADMVMc7KAhmOwdgRQZcjAoPLJJBGBNUA1MPQLMuCiaYvrl29fNGy
ZWvu2ltOf//FO++9PWbhgUt371w6d70zEPQ0NPma2xyd9tZn9x9cfnj1oe35
k2a7r7PZFQK8I7xt9288f7h23MhRXy+tE87MnLvqbNJKpVO5fDpjpgrl7nIh
VyhWKl2FAoxjoQDpBVsH/hWtiCaTIMgTVm6wuhaEHna22xqf3L9x+9GDZ/V1
Nq/bb2tsB+UY9bvcXpfTi/EiyE40sgTGKDyFMzA4oHKpiBNihywE40gII+JL
oIs8DMSbjJzetnnlhrXLT3t9NzZN/9u/jZ25av+FZw037tx6Yvc3u+z3Gzta
Ohte1N998PDW7cfX79293dpoa3G66usCIZ+36Wlj7ePqVWOHfDR9TSC2aeH8
PQmEn7lMOp3KF0uFXCoJ9YEBhIbN5AopXeSB7VUZqCmZBibRtFSmWCiU86pA
xcA8tzQ8fnD3zsP7tc86AEedLc8aSZg/wFMI0U+AFgVVJymgFIE7Y+EYFNbj
C+JhVzhOE+DHB6/HonVITZETYpySdS1QtWHVwtWrDraHb+xeMGbIOyOW7T5x
p/bZ86eNDS3OFza3HYintunJo4anl2+fe3D88r3Hz2/cftHQ7HK62lvsDk9n
8/Mft48a8vEn3x7EWrcv25koZqHdIKRsV193MaMqBgRaRoYAqUJw9Tq6CKMb
JhgeyzBNRCVAlBIWDAAvdDS8ePz4yf3bT+odwLId9bUvkLL0gskNRkgOaIGH
xGR0JF2R6Aw47Q5fkATdRjLALAGAGhqcCLw60sIs+Ai5de+aZfMX7Lb5n/2w
YcInH09YcfTKnYaGx7daWprrGtttz1tbW9z1Vx8+eHT31JWr1249vHX38qkb
5x7eb3X48HA00tnuaK6tWfrx28M+W3KNvLf6UKILqlWEniuWevoK6SQ44xx8
WUzpg0dVEX9YYCLAPRgAsoZu6tl0Uqc8nQ6Pyx10vXj+4vnj2tZ24PRgS0Pt
Y3R5JBTByLgIfkZkJSOZscwEKCEJvAcRQIv3bMyH0USEikZAo9KsDHIXXT+X
aWB+7vnqBas3/fAi0nTx4JQhfx23aGfV/RetT5uaO+of1ja62h7fvX350v3q
ozUndh88euZCzcVTF/bvq9r36PajBk97W1ubrbWxo+3K5q/f/vPfxq2pix7e
KfdkM/lST093qdhVAYOcyXYBhpbA9UN8qp7MILawTEtTFB3UnKaaGmiNBOF1
25s73N6wv74eYYvD5+u029rqHxOxCFrdYvnBC+RIzIKg1JOAI6l8UgMZCzgS
jcJUArFygizGeQ2BFcg+SQAXyD9Yu3XbhTZv272q79579/2ZO4+du/msoa6l
saHD1my796ju5tUTm/cd2X1477q1O9bu3HXk5L4tB3bs+fHC+ZuP7jfabO2N
T+tar+6YPOytv340+YDPtinemzZTuVJ3OZfOZAtAfoVKd0+5CPIlCf2ZyqNH
oZQHKyEl0QCijTRagiODXjLgcAWCEc+LuvY2h98Jh+9oa6kDMEHbXGheNCWR
JSgmoWmSDrZEzxXzOiJDQ0YrDOh/VkJqdzA+sJOSAbkUrm8/eL65s+3Oobnv
/e39z5fsrrp2x2Z7UXvnTm1Dy+PHjy7fuH5+/bqVG7dtXrNuxcr1G3fs27ht
9aZNu6rOnrp0p77R5u6sb3xw7+BXQ/7tz/82evJl50l/r5VQzUyplLVSWYit
mC11deUtK2OBy82kC3kYtlylrwSlQ1tJwBijS9YYWqITom2uSDjmqHe4XT5X
Z0d7Z0ebnWLADsRBQ4PbJiMBP6WaBhKugmqkkzDcqcFtOCZU1VJ4CV0TThbz
aXQdy8j09GWk64cuPrO1Pjq6aOjbH01Zt2vP4ZoHDx/Xv3jytK7lyf0XD69e
Ondi1+rvv9uwdtPybxduWLJlydK1875fuXPvyv1HTp668Lixqf7epcunFn7y
1v8e9cGYFc0PsCJURtDS2axlZQv5rrxuwKdGMgtiGy2TZUxZTRd7f+pNWZaR
stBlapmj8EgkzrO0r9MD4+YFw+ALgRtze5x+oPfB3T4MR+M4zBshoUVjhiMp
RkBYqavJbCFjqCY0OS/r4FjSOZQ2Wc129RTTiTvHbjU33Du/YcLbfx3x3e7D
O4/X/Hj1xp0r1Zfv3Lvf8LTm9NlN6zcuXvDt4lWb5s1bsHjxnDmLli5cvH79
so2Hqk5fvFFz+/md+8+fXFo45C9/rq8ZOvZiI53WEyzNq6lsBq1KoD0hYAIB
OzP5nJaED1lL09PF/jc9aCuUpUEFNIEh8HAMrTC2tHj9YZICEQ9WIRoJBJko
EYdyoW1PNMfTsSglJDiKB/nCIVusg8WDQSzCzOcNZGQ1K5PKQLiSOphW03h6
/FrdizPrZ733b38ZvmDnzt27T1299eOJU2eu33/47Fb10cM7tmxbOm/ON5Nn
z5k295tvFsyfPnve7MXrFq7YenB/9aWrN57U1d58/Pji4jFvvX/Btei92U8F
U5Fh5tV0oQtAM6mK4KZVSQfOzwAZZgulru7uUtrq6usvQNNm0iB3DE3iGIJk
4yThdXlCGCMJkTDo0jhPYpIvSkjgUIkwJqqmREZZQRZk4G8gcCYuGVKcToBN
yHdVimlDgKdkC9mUlc+pCdOUecnI1+2/03Bx1+LRH7/1v6cdPXH65MlrD29c
v/Pk1rP6RzcPbNlwaNe2bYumzJwyddKsr6Z/NWHWzCnTpn81b/Gchet37N1z
7P7VE9fvXzhdc37P0o+GVQe1ce+viyUVWRAlEyCmG4Yvo8maYcpGOp1DlikN
2q174FV3JlMs5k3NTBcKSbRBDwZKBlnMEZFICGSKSMUwjuF4MInhcFTQZMzv
j4p6JgluSFRUU5cFcB8kJSgsLZmpdKZU7urKGJKkw7QX8z3dBQO6RhDUTOHJ
4Xt3T20aN7v6f78zb/feIyfOXr1z9fylK1evnz978eTR09VH929fMGPs+Ilj
xo37asL4LyZ+8fWUyV988+2CpeuP/njl5rUzF2+ePnHt7tmZw4bezP/89E/v
Xc4lgNLMbLGULwFydqdUAeQwDIWVRDwn83Kq0t9bBnuR1QUtC0IA8b0moz0I
msRTJIazInQ4TsdpBgqFQUsmhEAgGiKETEYCfQ7PF5g4eAM8ytARMlEoF4CR
CuVs0tTVdL7cVekt51QhAVCqp/KP9l65tW3WX+ov/a/xGw8cq7585caNS2eO
nbtw/lTNiaM1V88cPL556Zxxo0ePGfvlpFFjxn0x9oupX4yeNO3rOVt27T95
9cH1E9UXq6sv/bh94hj2ZfdvV/40uZiGSHJdlS4EoJWeos7RMVpLpS00+zLL
caycKxXAE4IhVLOlUrFYSoGeAlwHQw+SmyEJzhA4ChQXk5AUCBjjiADBhTvD
KUtkuEwlL1AUCfGR3pA/wJqlvi4k6POFTNJKAoSBLASwNkBDKHqu8mjfw2NL
hq/Ln//L1FU7Dhw4f//y8VPVZ86eO1V9/Oj1u2ePHT64csmcqWNHfDp67Lgx
YyZM+Hz8WPj42ehpy5dt2PrjE9eDPfv37T50qWrmrER/X+8fLz4l+zPJVLGn
r1LSQD3n85Yk0qRomoYGUIm2x/E8GGsTLTmpWhK0ZzdoN7SQzAkwqwBOJEXK
AkOSYBVNlUMbG2PBACMTbr8kxCmhXEnTFMsphk74QxFGTuZzKYBMAGtoD7TM
ncubJhjqNFqAKQ3Yqq5umvR+ov/au1P37dl78OTJ6ovnzpw/cRxCvH3/2plD
21Ytmv7N1DEjP/ps9NixY0eP/2LEZ2NHffj+p599M3vuin2XG8Lt1WvWHKo+
OmOJ9aqvv/efEtUH1iFfedlT0mmaA3FimTpPA56Z4EoBwY0EQ4MyS6qQX+B2
K9NV0tC2U4ZBF/cMhY3hOEtTgJGKkUuDyATz4AkzEhX0or2SbD4DGeLBefA4
VFXUNV03k5BGYB4T+tHQwbok0yCS8ilwMK9ip47M/9PlN4VbQ8auOX7kTM2J
Yyd276+uOX3qTnNr7YX9O5bM2jTrq/FjRo/8YvyYcWPGjh4Jfz8Z8sEHI8Z8
PmXBqjUnHsciV5Z9v2Pf7F39b17190MNAciMLEjqNAAAKyg6yC+R5hLJVELg
OUbUdKgfEJ8K7SNDzRKGoTDRUISEEkqcBL2Hk4NX2QDr02mKjgc89jBF4FTA
7vQFMFkD66+KCYkDzsTj4GSB2vVcJgnGU0sC86lwPAOJpXQKxuRVbPuiP+0c
yOceffTFqo37frx0aM/O3QerT524Zeuov1GzZ9W8OUsnjp0w5pNRo8aNGTdh
3Ofjvvls9MfvDhv+yccfjpp76MTFm3YKO7N28caFzf/1998Hensr5WIKML9g
qTrILpZmBT2bZClGSaYNVROgLAlVNa0EN7hIKpIksEGcDjsDMd4AzJfAAVMC
FsN4HpRk0iLB8gddFE+F41FQ4FHOUHk1jTabxAN+jI6LgCKqZYBusbK5PHCr
hPSeJMkKuhKUzg94Rn2wsZTNFDpHfLZ+1w9njh45cnjPgf0nOuh4sP7yoY1L
Js/9dtTIieBgx06cNGbiuIlTJ02a+Ol7Q9//bPjfhg0b9c2S3cduBbznd65e
Kv3XH7+/7i73VkCZodVPtCxvMiB5Ab9ZnOEUC46ucDKIMnRxALDfSKhiHAeB
GYmGQXqymqWDAEEb0SL+ECHGMYZjIlJCiHkoOhwRSLfLHVWSGqtYpppOsYEg
wXNg85SkqbAkn+4FnFEFGS0L8CJoRNBLVrovdKC921STeWPjR8v27Nm2b8/2
vfu2VzWG7LXXD22cN3n08OnLxn8yduSoEeMnTps4cdLUGV9Pm/jhsA/eH/HO
22+/O/LbjVs2r9975+TOzdv7//mPXwe6ewbe9IJ4zlV68slcsYA2xGayOhMF
uBAMC9RMttKVM9HVSY7mGLTfU5DQGlHQFRIyeWipjG6obMTjxSgGbVcKcpqE
dQZC7UEKc9vdhKoLGCPKQi4jh8I0UJzIJzQpThBSttJf0DheBvoVhEwZVD7Y
sExPz+vXWQVJ7R8/nLG7avOOPRu27j321PXkxpXqs1Ub1n372bi5Yz78eOSo
zyZ8OeWbydPnfDN96pRRQ4aPfH/I28PWPSTN8NWdC7/ftWHD+d//64+fBnpf
vvnlNTBR7tWr3nwmnwWvW86leLSHi0J7muRU/8tyUh68Ck9TaG84l7AsCcIN
xORCfxnYOaWIVMDjDmAYxYqcj2IZf0t7Z7vdFwxHopwoYP4wTjCaTgfDbEJG
m1BZEgemVMH38nFBlThe0Hped6s6zGH5t99eV/LgiXPdjV/O275/x/Z9uzbv
OPXk7OFLtS4+nbSf2zV99rChw0eNnvjtjK9mzpnz3aypMyd/NvzDTz9+752J
TyN3n/naT8+fsnzlxsu//vHLQG9/T++r1wPFTH7gp/58Mp3KlyvljEiEcAot
1tGYlOsuWyJYUxAeJDgfmhb1XFdaF0Wa0Qq9L/te9WZE8PIOgP4oA0Is6vb7
OpqaXL4ORzDOg8zGQqC9AxjPRj1uUgQfwRChCJiKhAx9CT5RYNBez/KrUiJd
SGX7f/npZSFb7ivnK/5ZK7cc2Ldl14ndm48eX7/nvF1LEH5/pPnQgtEffjxx
2tffzpo9b/6CuSsWzl0w5eNPRn/x6bCF28Z88ufRG29uGT113vKabhi+MhSg
5+df+rvKL3/uKYFkATublmmfN8YkzByMjZLJgywE6FdBPfIAOwnTAo7UwJpL
iWxXpf9lRedFDg8E0Wo2r2qR5uam5sYWn9frjnASQ+LwiARDUPlQwBeihMHN
BCEpl9J1XcSjYYyJeV1hwsgb6e4S0ERXMZe0+oCsuqPfL9u+b+fOQwe2b1m9
ftWqRu+R+dM//Wx2bf2yKVMmzJg3Y9rceXOXrVi4ZPHyJXPHjf5m1tSRy6dN
WDL6o798tmnO+Jkbjqe7AaXAtJdf/frrz29+/qm3UkgbZtYUyYjLRangliBA
pME4ZMYTKs3JGhvXMmnd0sFGJAwNxGg+rQsk6E2Gxggog26QLS+evqhv90fQ
bSs4Fg3jPIuHoows0eg6Bi+Tfrc3ohTzqazJRbxejCZD3gAGpc9WcsCgmmZB
l/YVUoXny9bs21+1beuRYxvnTZl+qGr8p6vq5+z6fH7jkbXrFy9bNG3y6oVL
lm5fvXbb+vXfTx73zfzvZiyYuXLSyMlz/rRg6cz1G07xPQXIF8zby1/++P2X
X9/0g7rOdvekuTjgBwx80QSGMkCDAXYjrckgty0bxZxkIqdrGulM2gKPx/Oc
qssiQ5EkK6elzhdPahu9GOZ3uhxou0CQF3GvP66BMtBFRkqQHm+Y1IuFQjrB
xiMhCuCXY0EraIUcdIpm6sl0b385Zao3F289XH3y5JE9Z06tmbGufvP0xdOm
fXtt+6ptT07u2bT6uwnfrl6ydt2BE/sObN6zdd28abPnLP9i6KKZoyZ9NH/X
lzMP7K12vSrldD2VypYH3vz608Cr1697in0vB8rgVLKWXuytpEUWQqM5JQmS
M6lyGCXoCbP8JqcqQgK0GlgL2eeJ0LIsgoXlCHAhUGfPs7uPvBS6wyPg5xh7
nVdSsE57WDSsYncZxAoYDFEHE5/PyJzEEySP7qGRWB76AVSOYVlm7y8/F4wC
f2Dl3kNHz144evrq7ap1e13evauWTd9++Ns54w/X3a1eN/2ruXPA8x25fPZ0
dc3x4/tXz/5+1bxhQ8dOeG/GrdlfLDh56Ed/F+h4VZW1dKW7v7+3d2DgZWXg
11c50yh0defykGAhRssJwJgMiOqUIdNkVE0mCy9/UokwwTC8AaKA8gZJTgLc
ZCmMM1ISFQ89v1VPsp4OQpHiqh5p8iUMLtjhiyfSpd4ey8wbUKliCtDT5BiY
TwyLcZrGEbTIElGcAro0Kn09llqOb1yx/+jJWz8eq7lxbPeh3fvs2furF6/8
7Os5VYdvXju+4fvVa7dsPXj2xpX7dx5fu3bxwoXDu5YdWTF79jcHG7Z/8c3K
Y/tv2TLdXSDhZSSr8oVKoVwuVF6+7CuYRiYL42EkNYlhQXzGcA2kr4IWsXkq
mUxWXubxYCjOUnLazGQ0OhoD3qNoKozJpoSHeceTdpHzuAXwQ3GddvlkKAxB
4Ixk5KyEnta0Ul9ewAb3E6JNlmipHo9FYgyHB/0B0kilUhlTETPY/s1HDh67
cOnMiUunjx/ZvWqP/6XpffGwOW4ptzZ8t2b/oRNV1RceNzxzt7xoeH7t3v1z
R7ace375+oMnPywdP3bj8U2XXWBZkXdOWml0cVPVkYsYGAC2H5wsdHsAKxp6
PILhCnwaZ7SkwRlJScsXJRwDw8eompkvJQmPL4yTFJxdjGWZuEwB69GhIIHT
MQqQNUyIMsdxNAYGUeCAxFO5tIx53b5gIOC2t3d4/a4OZzBKxmgRTD+uZFKm
KIOaYQ/tOH7s1JWaqhPnfjx1cuPS1TtqCUUTMK+3Ye/K1Xura07+ePtRm9fu
9Xk7Gute3Ll45sCZ+nNb1q2YNG7CpIPVq886FLQOncnmy8UM2HZRSGR6B7p7
eypl5McyqZRB46wisXgkHFd4hiDVjCHwShx8uRiPgG+PygbYKF3wNztDMQr8
LBbCYnFN5ehI0OtyOgM0i5GySOKRGCuhzasExeogjoAB/Y62dkeHrbm5sclL
UFFflMSiYjqVSCTEZCaJLlDlAkc3Hag6dvPEDyd+vHb8+N7lK5asWb3z8OEL
tx6eObS96sdbt27euNeMU85QxOf1NdXW3rt4+Nz1o3vWfjdu5Ihvqk6vPOZN
FNMpxHjFQiaX08FoZ3pf95SK+a6BnnQSAFKNeKMgWkQabQUnSFlPqXQ8Egyi
G2Tcbn+Hk04aLGjtWKfNGQgFcI4DVRoGiUIG3GgNO8zJOJFM8zGPBxNUTebA
I0oG0p4k4W5usrW/eNLq9ITQxW6KJOLJSnelqztvZpI6utIaOrjzyNEjl09X
V9f8eKVq5/a1C+ct2bD1h5oL924dOnwXLZLdfeINyTHErH5Xa2vt7bPba7Yv
WD5jxPDhU0/uWXrQaRbT2UxGlS1UxbQEgqTc1wXBlnrKOdMqZOmQL0hgMRJd
WyajjKEp8UjMF4zF3H5np8tr93BmlsGiZNjvabc5vRFaCDbZfDjJoh2tMV6X
QHsxckpiOAld2WMIgsQYA7wDuErC9sJmb25wUiwWwWmRjmKcku4q9wy86gPW
zUIPebdtPLTv3PkDh8+erK65enD3mkWrN2/fe7Dq4qMLJ27dvdlc32zz85Sq
cAmB9LPEi47Wxyf275wAbnDY8G/3b//+gF0v5krlsgWOTzOyWS3BCya8bne5
iDboZQp5kcBIhooEQKyRMUpIKkQo7PUDdAZ8dputze9nrLRCxYI+l8vW0NLa
6XG1tjRHnTFeTeoilSgYrCoRRELmzILKiYTL7g3GpHQ2a3BqVonYbG6XT7Fk
yh0SNBrdDMCANAJuqGSSqVKl3Lph7Q+naqq27T95uvr0yfMHli9auWbz1v0H
rtysuf68ts3hgK5KyJKeSAjQVCFfe3Pd9fVrJw0bMnz4qKUHVi7YGUCrub39
XRbawmSl0R2tyXy53POynLaSppEvygJYBo0IOJyROM0rqoB24IXCJBYOeFvr
G9uDmCCDnPS1NTfUP29seHjv8YPHTcEIp2RTukDLBSXCcBzB8wG51zLTTGuL
n2IYzbBEXMskKU+Hy518WdaZcExWOU5Ey9yymn/9qpLL5EBV2Tcv33Pk8L7N
h44eOHj4UPXeVQvmzvlu5cZjN8/efFz/HPRfDIlFoGGZZ6hw2N3WWXt1/+Iv
3/vbu++PWbH1++UnwrmeYr480A1ThTNGOp3NZQFP8+W+St4y0WXABJA7m9Tx
js4w2uPI04SkCnSMxMOhcNDRafdEKfBLuK+tse7p07q6Bzev3Lj2xKWKomWi
JcekEAE/hOGER3+VS5azTCRuGFJcVBjatAzO6/CEu15XQDeQslUoVl793GOI
erqYzxQqXYVc3rP5u9WHTx374XDV3n37fzh8ZPfSWZPnLN9+vubKo9rnjS4P
uvOVUeREMqdjFAj8hvqn12u2TPrwb29/8OXaxQsWncbKL/NqvqfHBPGod3X3
9FcyMIbJfKkMPhptilFAbwrpgo6HaIllCBzqpYhg8Al/OEZGQkg0U6CQ/Z7O
hsePHj99cPfGg7r7dSAI4mjdjUkYgsBGbJ5oJNNrSoW+TJy2NHAYIhnXcjmF
pnEqU9E1VVDS5f6e7oHXpaQEeJxIVl71grJt3TZnXdXRg0d+2L9v26a9u/fs
XDF71oLVh6ur7z56XOeMxikywYZiIpwouKygw2FvqT19aO/MUR+8++GsDYuW
f3eM6H2T48xilwnEnen76dWb3hRwYDKVzlqqZaK7xxK6ouZ6snEykeCYeMwT
wAU+zsSjLj8hMGi1iBcICNPnsD17cOvmresPWgPuF6FIJMCmkjSRKGXiAWeA
YtVSRmCtvgzL6qJiKOCx5EK+lDc4TlcBVwFXwJOBwNVNiVMUNlEC/C71eDfO
mrF+146t247s+H77wUOHD+2Yu2TV7sM1t+8+rGuNEEEsREZpVuIkSmLASje2
1NVd3rZr/ehRI0csOzj/u0WXwl0/FRUtV9BlPZntqaBLRCAvMyCqkwZYchZt
rVOlTFcJYjY5VqT9gRDa2hdydPgIQZHZMOAOEQn6PXa7rf7RzQd379hIytHi
9gfCalYK80UzGjCLKT3bndfVrp4UalorJQsw55lUMSMrOmB2qgKmOpM20R6N
BI/sImWgC3KGbde3szbs2bB53YYtW7dt2VO9d9v6ddu3H6+5cv1BsxsP+wJe
ryAHA/UvwEZHSDbsdjY0n9+6/ruRH09Ys+XbBRuvO/OvKlYinTH1XB4IMAOC
E/RWLg/StzeboHldkRWFEq1cFzgnSTFlHN3/wrrbOpxRjOIFlqS5IBTLbe/s
cDkcLfVP7jUTpL/dCV6XNLWokOb82qteUzUymXz5VS8CHSmb05Pd3XkroXFM
JsVGw8mBnjxam5fNNLoxNNLZHmSTuXJFaVo/Y9zsNZu2rduwYfOOw1VVB/ft
3r1916kzt+49bYpFop21zR0uj7ujtsGPdfgJJoqzUUfr2Q0rZ46dvnbbt1M3
XXSk+otpK59KQ3/k0O5BS9WKfX2FpF7o70syvMzTHBcNcZlKuTsjwzTR6K4W
0t5gD5IxjGEwUtEIP2hGt7/N1hGIeG1Pm30gRfzOAIYJmpAqxPlCysjqLC1Z
RfAlYISUTCGTf91fzCjQiuVSIuSRc/l0Ig4UD3pVFEXS3RHQewf6klz7zslj
xk5duW758nlr9x86c/rs6WNrdlcfu3Lh2sOOjoYbVy7ecrR3BJ7cexFsfPDA
iWNehzfmrD20afE383ftGj9p75lnAiBx15uXWSBBtOGllNGSPW9eAvlVerrT
HMvjOOCDjzJSlp5QCALdqx8niIjfG8aiuCiRRMJgwxF/IEqEWxwxivI2N7nB
xvtiMhmLK2ap2yhm4omczkGvW8W0aapqOgWt0l/OWoYuW71dUsAdF3lQDUhs
M6LACXLcG0u9fJ03lbp9s8eNnDj/++83Llu2q+ZiVdXpPft/rD538fqjuocv
bmxeta3q5rPnZ44dP3flzrWTlxsjHtujlvaHP+6a//WcnRvHfrd1500HKKKX
v/8xUOmvdEFIlWLXwOvXRasEseYsARAzJghMCE8CictMO1hyCicgDEGg4iSr
6wzJK0w0EvGGMAL3E4pMeNvafbEwZlh4UDASuZc9BZWkNcPghATHm715SR9c
zs3KtKKrvFVQfDZ7lCDCnhAnUKEgSUUiDBuLSl3doMib93332XvDPv9q2sqN
m9afuHXux7NVF0+eunT7ad0LR1vN8rnrNq46cuowMP/dZ9d+OHyjte7hlZom
352TC76csXXxhAXz15xpjyR7B/7+60+9veVcrtLX31V6/VN/WpEH711FGwdp
QQCXpCeZOIf7QugecJYMEWKCoghJlsDwyTTNiRJ6IwtwtjKH+TyBaJjWuaBH
q4iJVxWTJflclwk06XOrb9I0lyoagqFGo+Ck4poWsjuCJKMIaN9v2ONjuXBM
0SRazqUEOnDv4IKPQYx8NGrq+q0bfrhx48rJmqNHqx811Nc9s9leHNi4btHK
/WfOXrpyt/7xjZMnbzU92b9l27VQ3c39U+dsmzPu08+W1zS72O7+VwNo10sy
W3k5ALMC9iErcYlUvpDREVcpMHwmS/MCL6roFl2NDsdwBg8RtAKOIGHIWhLA
CdR4UucTAscA9QcE0ufrEHs4qphPM5jUWwIUCbXakm+seFzvzepJIRzXLBlG
2eEKxOKCbhCh/9lQorJc0lJZuaDz3oar6+d/8f67733w4aiv9x7bce5Wzb6D
58+fftDe9PBZS/31Q7tXzF+15/yFKzfu3H50+9qFq/dqf1j+w1MA0aPTvts+
ZeLn09YdvNzqF7M9vWCPLCNZHOjXaSU/8HNPwUikukpZQM90SjcrBROsg6an
coaqZTSeQne3SgVTMnUDvZOHmQaZh3YCWdmMwlJRMFO+gM9H5+WAmLfiAdyQ
YtGwrz2S7zE0ibd0ReMwtZxOYDjmsbu9EZKX6FgsRqP7KQVJU5VkVovU37m0
f+2M8R8Neefd94Z+MO3k4eMXqnbvP33u5qPOhw/an166tW/pjJnf/3Dm8bPW
Wq/H9vzG1Utn9mzeebHTVn97/c7No0aP+HzB8j3XngXUUgltyTKNXHc5Iwm5
/u58pZzOdvdkVKtQLqQUM5HgednKZdOqwCV19E4hlFb56Sc9nU0pIk1xrJQw
FR5duevLCNFgxO+KUhESkxQXneFD6L7oOIVueKdlLZfimWiMitP5XlPjKJHo
tHW6fX6MA9knl7OGjq5iq4XulK/u9rkzBxZPGPruX996d9iwIUuu/3DixMGd
x58/flh76rTj9q6Dq2Z988W8Y7cILZ/KGDkxfOPKiTXfbjz5zP2i/cgP8z95
f/g3q/YcO3zBrybTSSlh6JU33V15wIT+spp/2ZMp9BRL/T/3lwqmkgBfJGf7
wAOn1VSXATzMm6WXZTVXKigsL6M7lY2EwHJmpSdrxEOE1yXwnAiI2BHjQbv5
KEkRSJ5scwvgj6mw3xEguXSKVy2JCza0OH0dTS6ukFUyAyVQFZIgKbluPeJw
PH1+dcmkj997++1333t36OeHj566VnXkWvB2re1x3YNLOzfOm/DFZ8t3Pci8
+f0/fv/tj4GScH7d+A+mH3oIr9Z0bubIEWOXb9135vqDgDJ4papQ+u9/lXt6
ckZ2oDehVHphEgt9AwOvfh0AesxkJLn750p64NXL1z+VdNWyAOwVo1TJp8SE
ZcgiJ8moUQulXFaLc0Fc4WklaRItPgwPNDniHHq7GY+d4YlIyO7xucMEJ3Cs
Yop0sLk9RriclN7dW8iV8qYKFli18gXB3XT3UtX2uV+OHP7Xt/727ocjp2w7
dfTq+cvtraeePb3XcO3yru/nLV/y9bxtN8u///vvv7/p70/6ji3+ZOSMTacb
muyBq5P+8m/j1/2w58iJg3Z4uXJfz+tf/9//0/3651d5oPoEmbAkWrDKxfzv
//1HX77S06vLlZ+L5sAvP/36a182V+kd6E/xVimfyaIL5pbEiKJqpTO5bMKy
VCkSJjk8nkrzopnLM+1tTicgLu5m6Y66Fy3oxjcyFor6gxR4FiZAKWyITOYr
EFy2aCnodspkRg+3Pj1/9uTa5bMmjBkz+pPRI0ePn7x514XHD50/rrt8rubm
w2s7N25fOmPd2UtVz6J+27Omu4fWzJizfuqE5Vv23n7QEb85e+7Yb5eu27xh
1fIbYFtf/v3Nyzf/8c/X//6vNwUrbQmkIMRJzsiXir/8482rnmL364qR709x
+Z7Ky59edZf7f/3HT1aiqz+XLViGldFZQYP/C+CvJDmXSViBAEfFk7qUVPSi
7LY5A9FozOllcE9rbaOjw4kRztYg5scIMROPK0kFziAHCKwXK6Cf0HsOZLmm
WzefnD+6d+XcCSM/HvLO23/725ARs7dX3X3RdnzG4ceXd9ac3L5+7bx5Sxz1
s6fNnDN17ISvx4wa+xVU9PvDNVeudERvfD1pytxFK1csWLb8OM5ar3+uFEr9
//Xbv//zVcaURBpjeJID+Ch29fUW+stWsqs7VSh3MVKp2NtX7ioP/Pof/Wb5
598GcqVKT19ZZhNW3jJyXT1lLZHJK3mWEWkuKUWCbZjg9/kpcFlBuz/Kq6Hn
jS0tTo+vvckV8dOqoUdw9OY+spZNgm8pdCWT+ZyVLeaY2prjB47vXDfrq/Ef
DBvy9nvvvff+519NP3Ctzlb13Ya7J/YfXLth96Y1Gzc+efbpO+8M++Cj4cM+
eO/d4bO3rtu48/iFO7XO6nFfL9q0afPG76cvPO3Revu7U1ZX129//+nvlXwe
zCdJMsBPyUw621XM9VRSOujCVKmbp5PZUjYFMPn7H93Fgd9+7svmB377qcTS
RgascK4ftIGkK0IOciQGuAQedHHhehdalhFjfiJE6Jyns6mx3eNtamh8VEeq
ghClYXgBg40EI6XzuVKppzub6zIidecv7d67acWSyRNGfTDkr3979+3Rnw2f
uPjwg+eHFyyrPvugatuGLZvXbj1QfX8l8Mf7Q4cNH/Ln4Z/P3Lp956adRx/c
b9n20ZcTZu/eNH3lytU3uN5X/d3ZTFf55T9evoRXT8maKspa2sA5zUim04Vs
Ksn6g5yVpUNkAix+vlDu7gMR97IbjGL3L69NMWHmi5aWqbzuLYBn5AsDKYmL
SSbl7gh5mjs6Gpsc/o6OiNujmrirsbYu4KurfXi7mTU4luZkEA6kj8BwrVzI
9Q10d6dT5ZTv3tmje1csXLdywZQxI4a++86QER++N+rTj2b/+PhW9Z4zB4+c
P7lv8+qNG3cf3rNt4Zr1I4cNHf7hZ5MmLNi5cfOWE6f3XbDt+NPHk2fMW7tx
6dwVdenuNz/9/KrcVRn446feblNL54uVIpC1igU5RUzlLRlt6/DHZSkhK7me
3t5KKZcxWUYv5LV0rvyyZORyuXwxlcoXe1+VTCslpX79JS0JphWre2EDU9H2
7EFdW21tc60zbflsrXWdRNBWe7fRIZaEwZsmwWeFXV7GTBtK96suKF9e9N7Z
u33VysVzJk8Y//nHQ4a88+mwd0Z9OPTjz/c9eXZxxaI9R9bt3r9r/Y6NGzZu
WTrk/Y+HDn3ng4/e/XDOmqWrN+3avPfarnu7Pv5g/HczZ82bO2XLLTLX+/d/
/cfPIEBLvWWTx1mFR9JZTYmEAtRZKSRMg/JHaTIm54vdb/q6cinTUhiWBZwr
ZYGK032lYiGTTL981fe6nDYTdCHX/aqsKAk27PSAmXC13b/ZXP/ggT33SyYa
waIxIoZHGtw4k5MDYQbtyGDCnRFV5Gix/LrX7OrLcrbze7ZvmT114rhPR34C
k/XRkLeGfzDkw5EzFh54eG3vmpWHt6xfs3nr+sWLFqxZsvCzoUOHDRv6wcjp
i5eumr9m+7wd+3Y9nDj0o0+nzpz21bdfrbnhMvve/OM//1FWE5plMiE/q1CU
FCc1mPhCz6CN0XWAQyHcHtN5SbFMKzF4PwQjWoXufO+rfNfLnnzKzFd++73c
lzcAfBOs1l3Jg3hNZmSSigZDtsf+SFus69c3XIRXeb+fYCUsLjKyEnNjskwT
Ya+L1wSWV7NdOaurnFdazp6o3rZ8+qRRn4wa8cHQD4eChBk+bPjnE7+ef+re
6aptKw7sXrdq2cJ5382cOWfploWfDP1k4tdzZs+ZumjenNW7tqzdf/Hzjz78
cNTnX48b88322lChu7vvt9/6u7rL2bQM+h1zsUIUlxJqsaJxIhmjwb2xrCm1
eEQiHOGTlilLip6U9WK5UPr5dd7q7imZkKQ/fu0u6eguDk+IySbFBEMzBUtT
BZEjPTImVjKa2NoWZENt7oAdN1mwk6IejidZXyDqDGmaoKcUOSEly5mUZD++
ec+6hXO+mDDqkxHvD3n/rbf+/Jd33vt89Jczvlhy5vKZfYd2rtyydcnc6XOm
TPzy68WLvh6+aO13U2ZM+WbKvPkrluyourB/+PsjRo6b8PnID7/cfadOLGey
PW9e9f8E0J9NJBR3iI0BbitWOkkzMEdZAb3ZhZ4N2EUTvVkd2kqvJQumVezK
FQb6k6Sczheyr39/092XFhOGRHh9lK6HojSOKYmUgAsKiICoITmCrmZnazTQ
3ul0SWWDirnCOZnvV124xCR0SUgX0PuQ5QfKSa5u/9p1S+ZOGzMWqgfY+O7b
f/nzX9/9ZMSnX4z+dNv5UxeO76s+vnPHqvlLJk2esWjevFmfrfl+0ZRZM6ZN
nvz1d3t+2HNm2btvvTN6/KQpX4+bWHXjBVfKmNlyqVAo9XRl8qUUHRfIqB/j
NVMShGSxryKoKY03UngI5LFOs+DBiwV0H3pXrtjz5rVFESKQfPkl2kNtJGWa
9Af6K2rExdDBvpIiYKLZVTLYqMOHd3TW1WJ+dMeeUHpZYF1tekYYSLSRktmV
NtPFYkLmhVRPT0loOLN98cwp3/x/HL0FVFRr3/7v8xyV7u4Owe5AsEUxULEb
uxVFaemG6e7e092dzABDo2B76vH0OcaJ933e9f9vfnuYNTAza8F3fe/7uj7X
7H3f5ETEh0eHhvoH+PkunB8QHBKRkhefe/Lm7ZPHTu85uG3butV5mVnLVi1L
jVu3KjczNzdvUc7KNVv3le5JARU3KiclMyNt3eVuKM1h1A8M2a324XG7RmFw
aOVWD4vSD2NJwGmmtowOu0efjw8NmhQqg0kh1Xs8oGoOe6yOUVBHZmZsagFX
olDp587Ea/Q2M58lROB/nBKzMVwpc8xIk0vMg68nTVqWAIQieheSj4VRhAKJ
SD+kJWO4IpFbS2Jw9XYQJmx2vVoAKJ2DQ4q+6wd3r1+cmxIXlxgfERnu7+vr
4+sfHBqTsWRpZmbRiZ0Hd61cHB8Rn7NsUWZcWHhyRn5qUkJETHxcQmZ8bu7q
tNDgoNjEzOTU9JR1l55CcZYR68SkzTI0YtNJUeBPE6/e2rRqLFmg0NmHxl/O
et1gPnSBv12jl0vtI6PTUyMTz9z2cbdzcHLYYFYAMrnS7HQO2lV6h0YoUmL7
htwSej+Gzzab6Qah1jMyMjasmTuXKOeweTgCAUcFC3FbJWwBT2ixyMVChUrI
FYESIxKINBaP1wC/ebp05aJ0UD3DwiOTw/z9fEBE8w+KTUtbkxUbl5q3bXlC
UFBIxpkmUl/1tdMdbTXHtyyJCQ0LiYqKiU8MDgwMDI7PXb4sOz9j6dWGhlbO
2Oj0jNs4Met2GRn8ibezL98/n5yySyRS3eCzWa9GrjGq1QYwoBvMepXFYbG6
Jt59O2r3WnTuZ073oJ6pMMhUBjP4otFpN+os3F7ALiQjkEwMf1Rk4+kdPJPX
oTOp6VyTWcblifgMlNxsG/EOzO0LaHebjXKxQTn3eRUbbKTJZHdpEA03D27M
S0pNCg+NjYsOC/Tz8Vm4YIFvaELSxuVZmcEhsZn58aFhK4rv0uR8KpqD7646
W5AXHxUe7AvOVP/AgKCw6LicZSsysosuVNY1scA88GzM9fLrUY938vW309ax
N29fTnndJoXOBJq4UGcwOYaGdEYDiL5qtUUrlGgcQ06zRqnwvvYY9Q6dxsCi
KZRMkdpocTvUZj6SqiWTxViARBxgyoW9RJ4IFJpJA0+lMurFIolBxtI5B2zD
XvPIhMfhsioFIqtFKlCLmELnoNVos6thNTdO71udlhgdFRkXExkc5OPr67vQ
z2fhwpjcvG0Hd+SnhGWtyc/NW36qBV5FQHYhnzw4XLx1cZz/v76av8DX1y8o
NDAuMSc3e1H22uP369sJU2OO0UH32xnn1OTM29khk/v5ixGVa8iqVIDMolS5
nM6pV7NOsDYTKANWLVcE2p/aKNUbn78Z1HO1HpNOwFLzCUyt02G3qI1MLJFL
wOrQWiVeQlWb+jsYNJ5c+nxCbZEbTBLToFvvGTPoTaMTIy+9GqmBT+eJbA6d
QsRk8h1g4nzpEkBqKq/tXL0kLT42KjEhNCjQPxCcgX5+/uHRMbGrHvR3Nh/J
zlyyavXee3AsEeByWJD+R6Wrkvzmf/Xv+QvBNwaFR0YnZuclpC5ef/T24xrs
6Oth76DnpdcxPT01aLMOeEeMUpVeNbedn0AE5mzT6Mu3w1arYW6zjkGHijt3
3afSYrK6nk9ajDy506w12jRCClvjHBk2mCxsPIZFhfP6OSYyna4xUTv6RICA
b3znMbrBHGR7Net9MasV6R1KzxunlGvlsxQam9WoBUlAqDO5Jkf1fET7g0s7
lyzNS0+MjogICQsL8luwwN/HD9SY9MWFZRdYDpMAdqlsy7X7XRw6S8QiYZ/e
XR/j4/sVeMwH3xYYFJkUl5iYkrp08/ErlQ2wwTevZiY9z9wGy8Sk26Aw2Wwq
nlYhFmk0Qol+wKbVecfder1l2CHXmmwO0PSFMhHfMmC2jnrMOqXL6zTYQPFk
iYw6k1au0GsAFIcP0VF75ACRolbz2/utKoDHNL0dGxlzey0e9+Rbt1hp0bI9
r5/bAYCNl9vVAFejojOUoMu7jBIqpLb5cdme7UtyF0WFxcSEgYDpFxjgO9fD
tNTYpdUG19T05JCJrxd2dLRQpVwBsbQw0n+h74KvFoBHgL9faHhMQmRMfPbq
zQcuVVQ3ul6/m5ycfua0uZ32sSGTnqcE7daoV1gkgHFkatDlGhrQgjPI63Fo
xVK1Wg+im4ouNLptE7PPXRbv9NiAXa4z6O2eARFXKFJPPVfxRHC9qVMqIAIj
aikTRRUDDD5n6PuR6UGHxy7yvrSZva/fT49MjPLoMDSar5KzkAKXTS6zWT1O
pZCBbqu/WLJr3crs9NjkuNDwiKCAsJBAUEJ9wiN9k7becjybmpieHpvwujUK
jcGq1vBv5EQu9Pn3gq/mL/Tx9ZtDgghQlhIWb9i0d/+Ri3eUszPDA8NjDs+0
Veucmhm22vQisVElUrBYCsfEiHfQ7naZNO7BYa8KECgGxgY9LhufJbNYRkYG
bBb3yLjXyAVU7qGh6SG7zWKcfalikZGawXYaC8V/6ZJwOlEDYgagGHw28Xxw
cNJMU424J6yeN28mp0bwCAgawxHrlTS2cmpIMzxmV/GFAO7J5fIzh9YvT0+I
jwkPDo0KjooOCwjw9/3KNzF9c8HTqeczs6+mp6bGhkZHwKZY9Ub8xvAQcPrN
B7sXEhoRGh0SExUVF7NyX+n+LSXHzxpmJz0uh9nlHlbrLCPvXw15Rkafz1ik
VgMgd7hsQ96xcY9cBXrggEapsQzbbR69ms0BJENuBRdQeEDxmTQKtFajc3Rk
wGA2jdm5HApKYeroRqEoE0NGCY7soZGppu9HZ7/Rm4e1Uud3JuOoVaaxjo6L
OAwCnae3yUU0pNji9rqUUoBP775dcevKyT0rs2Ijo2LDokKjk+PDQwP8Qhdt
y08vKeC6X797+/rF7Ivnk2PjQwMjQ3aXoTItOHr+AlBdQMwJCYpMSAwPjM1a
vWr34YKDx8uVs26HZcBkGLDotPaRyVcvhk0Gm9lqmv2PSm/Vagamxz1COuiG
c2dIDGaNyGxnkzEslmrKJZOItc/evPFOTw/bwWgEzkm5SqNyqiBUDJXV+7SH
gjRbzS4lA8D0EPTvxwff2KxjOpnmh2nV2KBWxxVavXYNwBA67BqThCpUOB1z
H2pzME9r62/dKi1cmrVoxdLEqLjwqLiosNDQpNz8pICinMM41zffvH375u37
lzMzM1PjIG6MTfIPBYcEfLXAxz8kMio4NDg0JSokftnWlUkbC/YdPiF6PvFy
ympT6+0K3cjMiPuVlcaRGcwj332rkWkkysHpUZC0RWqXBQRrkwEAzNa5/aMA
tXNMKbJ4J2fG9KaBaTcY5BSmAY1cCwgcEAwUR+pphyLauAquecSMwxBAXRlx
Dwyb3U493fjtqMsxNQwIRGqnFuBphkZGXsyMDJv1OhGDxGNiW2pvXyg/dLBg
aVZqbHB0ZFR0ZGiYX2RsUHBM9taCY8hX37z+5v23H759/+bNm5ezL148n519
1pPjHxTouzAgJDoqPDTQD4xHuYuXb1u9YvWW/cdp30+OjqtsDrVAaHW7tArn
tE7u8ng+fPRwJBr12PvJ2UGVTAE6n9VpG3MLAZmUxSJDWTqzRyvQjD1zDdi1
psFBndakkBs0ajkB5aCTYb1UFIHe0s9hEHlqiUTANevEIpXBqZB4h7iUmXeD
tlGjwKEQ6xVqx8jLMQ8IqU6LXsnn8Nh4WM+dE5fu3zy9dePq/LS03KzUqPDY
4Iik+MiI5SXrlhwRzs6+/v7rH3788OHb7755+/rN23ev37+bqs5aGBQWGBIR
Hh4K+klwYs6y/GUbNuQvX7vlCGLQM/tKpTVoNXqQVQwK6cDUxJRn6uN3AkCi
tg1/PTFu5ov1dr1zyCo3OtwGk1bEwaEZejVYst45rFNqtUqjx+m0a2g8pdLK
EHnFGAiEBSfyEGwy+BSlj83tqOKauGSKSQi4LBKOfZynHnar3EqL2ep0D4+Y
XDKTy6BTi/hMOgfTcP/O9crK66dLtm3fuSJrcVZ0WFxEUGRsREzi8aK8mHP9
3sGv//Pdrz//8uMPH77/9utvvv3mmw8//GeosdAnNCAIJNaQ8JCIiJi0FYty
lq5Yunh5yckmyzf/vBbJLVo5SwUKuNHz9U8ff/72u188PClPKtVMjrmEHO3g
uB6kD4Fu0AuCqMauYHIETKVDZTFbdBydgcVRGQxqrcw05BlzGG0sZA9EQ4Ao
OH0wusAu6WMYqM1QvV4K51hEfJVGaXFT+L+MUvQ2i05tMlqsertNB+ZfgYBJ
ZDMx3XWXL96tuHLu6MnDhWsXL12emxQfHR4eHpWycvHGzBUPu0ie7/7zw8ff
f/n5px9++M/3Hz58//Mvv/72teB6fkRoUHhYXGRIXGJmVnzqkrxFy1YsX7X9
QuvQr7+Nmwx6hYQueT1jU7gmh6e//fnTryYpm2NWiLSDL0wKz3OTYUiglVvc
FpuYx1YrqTQeV2q1uOxem1hm5RFZfLF5Ymbm5Q+/qIkiXH9nt5aN51Mra1E4
KYPANNJJKJleCLD0AIYrZuq0WOErUofCIeLpjHaL3uB0WVV8gMZnkrBECqT6
/t37Fy7cunNyy7Z1y9fl5SWnxEWFhmfmxCem5Wy8CEGZ33374+c/fv31p59+
+vDhx59/+PXTxy+/Tlxelx4VEhYRlhwFvi13dVbupuU5m7fs3nO4c/ibd3a1
xjBipgufWwxvvDIG3zX86o/vTXjRkFxoHh4fGX35wmJ6Pqo2O602u4pMYknZ
VECgHnk+OfluGvRDKcfonX337QubTOoQk4Xc/o5mFgNLluJoRgYCL5SKOTQa
IGPQSSwqhsRhcek01ZgYweGy9R6nQeEYclj0QjqVwqahkEx0T0XFzQvnL10t
239yT8GR9UuXpmWmpkQkxIXExkdn5O3sgYunJ3/489PH33799Rfw+P3n3z9/
+fLXb/TVGxLiIsMTYhOiMrPT89blL965acm6bSXljbZxuwEQDr5S4RBUhXHQ
ALqVxml59fk7ud6rZA+4eGy7S8XQDX54+9w1PPt6TMGTymQAT6kfnnQPDdun
p0F89Y5PjYw6lDIumdbPYPA7GmHELgJj4P24CIJh8LQjI3KKVEZVsNhkNI1C
QIl0pndGNII27DCITV6r2qTg0kk0AqwfziB03Hr06NajKzfPnz9xoHzfxgNr
V6WnJ6UlhkcnxYbGJK/uvMAG+D9+/vz5t4+//wYen37/9OeXP//59Ork/tTo
1KjE9JTUhIylOdnrVmzYtq64eF95Jc/sMBksRg0e3ied1YGDhCriaXWamd9n
zFI8zWaRDnlBimXxn/88MDvtGvfaFBy+XMhXCEUOIZWhAv1dp7U5BwZtjqkB
HiBh4TulYjSxrwkOeJ0UMYJMRdCIIpvJxDQa53YHEwpxUDqVIxvlk/RGrVhn
A1OXjseiEBg0WBOURuqqb3pw9+qV+9cP7jt7auvBkt1Ll63ISkhISckEnS1w
S0NJTf3D2V8+ffr48fffwfvnT3/8+eff/3z+nVu8MTQ1My41Iy13Uebq5XmL
lhQtX7VpxebrDLPJKBHZ1AgIRDqrlfBpJCGVJBdY3v40zmNQBZ7XQ0NGixpH
s86opgdJOK5OSSUQaHSukKIGoIB30jW3AxgYD9US20s3qYMOgcAMVgAFQzB1
QB1bwWKSUF1MKZ/PsNAZVAqSIhdBATGjE7AYppRGs1wiU5vEHC6VyMS3NXcQ
8GhIVXXV9fuXTp68fObw8dK9O4u2rshOTcvITAgJDwvfe2rb0Xtlzh8+/vH7
J/Dr0x9fPn/68vdff/31w1R5UVx0Gjj3chZlpy8q3Lp28eai7JzVRfvhxrnt
l3SkPiiJMywXOzh4gIoVSKcnnv8s9fCEP7ioHLFMBCiHpi0qLa4Tq9EKSDQG
TcinSzVM6/RzG5YvVRk1SjlPoTVy2uAeBoY0qMWSIFi3uIco4uFQJDmrrRnK
mtvVlobpJPOFMnZ7K5KmnnUa1WqhVK/iE3B0Cgne3tiJw0AbHlffvnP39Nkr
pUeOHj1RemBXwablS/My8kAoCcssLNp4dO9N/Yfffpur7+PHj3+Cs+/vv//8
8qMddiotOishK2tRdkbWktzlaxcvyVmVnVR8Ba0fHB3QsKE9JBlHxFRbMDwG
g8fWTAkFY/rp1+/1ZDIRDe2jCo2jKoADhVFofJV2SEYm8Ogsz8DYy2mDiM1X
yBhEBiAWcdidhLdyKpYxKnj0pFtJbOLLBd1whsRDbEIQWBQcnsoicIxCeX9d
B5ZIUOhkBocNjPUkLAZPoyIbnnahMYi21kd3rl4+fvbo4cMnzu48dLBoa9HG
FStWZcbFxESvWJJTUrKlgv/6l18/fvzj06fPH//68uXzX//89fknS9edrcEZ
2TGJ2elZi5ekJi7JSctOXrp042Hoi7czJgW1t5clYzC0Zh7LKOHQqU4zhUi2
jv6ohckFhE40kULmerVsaF0/BYMhy8c0eCiLQnJ6p98MajSAyGyg9mEoNBKN
9KTKZkZRhQMDpOYquYUGZmGRiE20j3KoNC4eihSxOtCDNCoZpqLiSDTJiFPt
1CuYeDwaTWF2V7b39JGp3W0Vd+9eu3r+2MGjh/ceOrZ7+9b1i9dvWpmfExcX
k5qVsyV/8VGU7bvf/gB79wm8/fnXl89/f/n8s+JWycHM0MyMiPD4jKTk5NjM
ldlZ2elLCg8+nZjwaIR8NpYOEERGpcpoBs1WP6Xkc/Gil+8oZLsc6KMohAQW
GPE84Bij4TCAS4VnOHWAd2RqTC6Vc0DoljKZLDFPIFA2dg2iGELtMz3G+O6F
QWHzDpoUZNyQBcV3yGAQJe1xNZWBFxMmyBgJkTfhNlnlQjYOicIgIZ2trU09
LFJ7U0PV5RNHDx05XLL/6LGdxaVb1yxftSovMysxMSEqfmlqQuamho6x3z5+
/Pzl45c///oTHJxfPn38hXxvf0ZmSFhqQnxwWFRkekpSekZmbkbW9uIqgVwr
FRgUVBJLIFYbFBK5Wqp0z9jo6DrB2++HuGDJc9sLzV0taxiQMqkQGKAaEJGl
r0Z0g+4hLpJhnJ50SkEX0FjNVg3JSdIhK53ct073O47SxjY7iFQUEq7TYWgi
gARj02sft+BIQsIMHRQUqljnMsi5RDQBiYSj+xset/SjCbC6qksnTp65cunk
6XOHiw+Wbl63Zsnc2ZaYpISs6Ijo3KSkNTcqLb98BKXly99gdWCJX778/Dvl
UUlqeHCIX2BoWERiYkpmek5mfPaqrKXFD1RiLgEFx7BwPbKXTg4eh2eygbmt
vcmIAd2zGSWBSufIlVoeXSNB4mlsJJZo14sZcu6H12r9gAyFcn79duYbGZKh
sNj0WlkbRiOEskcJ9lGT0y5WiRljgklKGx4mZBJhvVo6gQptru3DCSUzABZC
JFANepWU2QPt7UdBEb3N3R39ZFx7TWX5uduXrly5euVI2dEjW4rWZeZlxyVG
RMZHJ4YFBqTkJWVsKhd/+8cfnz/PKedcgZ8//eDgXi9ODw4NWuAXEByTujgj
I295fuaKgjWr9t01cwksBh4Pa2/sM755+XrINuHiW9lMj9dh4JqdU163S6fQ
ath0k2Jukx40SWgSYaFs2oufFGNDVp3lu7dKYHTWDXBVFiuVR6bzhCqnBcud
NNjGZ9kEhldlIsC4WgCO6cFYqL1t7I5aHEXmmmIhCGo9Q69QAsh+ZG9/P4pY
U9VaBQOoba3XLt+ruHP12vmjl8pP7t6xbdWyrMjE+KiIsJCwsMAg/5TohMWb
YK4/PoIm/+V//v7nzy9///F5jNlZeSAqKMI/MMA/MTF9yco1y/OXbd5VULjj
QKV8YtplcaD6aVg+0/lBJR96P6UwEBhs8xiDpbXZDSouloTFI7CAWvRsgAvj
jumEBA4ZJXCzn3nHJiafaWUUkve1lEBmmw1CIxrGpXBdGJLJ7DZa0HSSVsIg
A1QlraOnFsElt3diCe0oNuAaJvYK304JtVIuqb+9sb29C9P1qPnxEwgD+6Ty
wu1b986cOn/y5NWLZUeOHirakJOVFhMLRteI0GB/v6CAqDU5t+W//PHpy19/
/c8/YAs///HTNPXUttKQiMDAqJjI2JTkpEVL1xSsXrJx+47iMw2MMa9QhYFg
STQeT/+ay7VaHV4zgcNkGXRWN13e2kXl8wgy/GO4iv/1l3E9y6sk0RSMPpiE
4Z2xWb0anlBpfjtmVAJ0k1P6QssXGqxmFtpiVUnMIpxYgYQgpSIckkBveEKi
VGIazOxmiUTCJUAY3w1I1QCJCGtuaGrvxLU9eHy3GYlFNdQ+rL59sfzSieM3
Lu47sP/EsV1rVuXnJsRFh4F/fyh4hPslJB5GvgPB7O9//vn777+/fPrtP2/h
W2IKkkJDw6LDEuPTk1LT8rNzN2zdsL9477kuQOLQ06BiqVCsHx9+adJ6B969
1FPoDLGU7p2EoIT1os/ufrGSwxPBXF8mnDS3nc5kQDsZQxLXu1GPSW3XawYG
5aaBAY3VyR6sxUjezaoGyZppBgoYAUGgB0lzfM3jOsStLURSOwEx7e4DQxJd
xWG9cDt1dHrfk7qG+nYYorPuwd26Rgq8tr3x4ZnjV64dv3D6QPGRQ4cPr1u5
cfmG1OSUiLCI6MjA+KjQ2NDQgivKHz7/+c9///s/f4Gs/eOPrztTIhetCYiK
ToiOT89Jy12Rm7d03dbtB8/cetgtMXicVJFa6hrgiY3DnvGXL+xqySCPoKR3
8ZwKLJ88+yuLpHMoFWrZyCcShaF9buUCPc1Ml1TscU7YlN/+ZBbC8SKu1gai
D6XKMD79gue0ap+NEqA8h4pkHydLjWqXvpFKaa6sJ3HfuoUSFvfVCx5TzDeJ
cKBcttS2NsAQ9VU369t7yb1NLY/PnLlw+fLJU/t2Fxau271ldeHmjTuTUvLj
wiMiE8EsHx6elLZkf9uLj1/++e///fMXmAV//2Hyem5c7OaI6ISkjLTUpJzc
vIyExZt3lxwuPXQdqpl2q112g0AsoqOYg6aJCR1Tb9ayJSIKyMVGlURms5jt
Lj3PKBN7P9EI9H66Tkfp6uLKFIDePOWlWTUqAMkHoUAMraM8bn4xzbOrOE61
7d2sR+6xsCQAETM8zW2iuBkiGkMmfPmMwtFMO7QsnZcsBPq7O6srqiqqIZjW
yutPmvuI2LpHd48fvXf70J7Na/LzszYW5axev2nLkvRF6REx0bHRibGRsenJ
63Yc6HL98eXv//7f//z5+6+//PadrWZTQtTyuZXx8Sn5KzMX5aXFpGVmLy/Y
tuk8VjGtpeo93IqnPJvCODVuMOkMBruEbeLxTTKuSD5gG3K5jEoBi8ZUjE4J
WTTi2ItxXBNSw5ebzSrzsMYmVXNpAAcgclXsnjq4jkMUTijHuZTRsaEpg24A
z+UQ+WzRQ/L0j7+NmlXqqddm2ySHJpCYbEoNltBTf7/6yZMOKKq96t6jZhye
2Nv89MG9K/t2bdmcD5p0dkru4lVLF6VmZmWkJGQkp8TEJcekbD5SRTK9+Pnj
n//7f//98umX337+zovbkZOUlJWdEZ6SnrxkcXJchH94Ukpayvqy6z2aMYNG
IidzB0ZtJq8ZDgFUZs+gg6+nakTEuz1s/ZQZCaOTVN8NcAccbBaXjFYNSDqb
cHqTUCmjKCaZTIlIRJURcGjF7+Ncvkyvo6KFJiuf7nzNoXCVP/djRIgu+ihP
8fk5j8ZjMQYn7N7hd26u1KmxWGkwVPP9OxefIhjkjqf3b9QgEUzokyunjx8u
WLtqbW72kvSEuISICLAVS9KTkuOTU1MSYjIXxW6skw49f/PDbx//+b//fv71
1z9++mEGtn1VVkZa2qLUhJxFyYnRoaGRCSnZa3cfuVsFF9lso+NC1wDAlg5q
6rshzVytfmaEJcB9AwCUOq5cRyPWdWPU77+Wq0xGAZvaD1WL6pR/KGRs0A11
7wQckVAosIAGgtEQABSEbtQPKmhEEmFgUstTy59rWFIrVy76ZnTGCiZ3JNQ2
M+V5N2mzTY5RJDZ8Y233g/LT5Q/a8cTGy/erqTxm+4VLR/bt3r5xRW5qYkRE
SGBwUERick52akxCTGR6ambm0pUrd/U7pt9++83Pf/79v//98tsvP3//nfxO
0bpFyzJSMpIyM1OzE/2Dw+PSlmw/dKq8sr6TrB3QekUi5G3WjK4FquRTiRC+
RkCmITUdXDvYMMMY7X4dg2d691xjefGKiyIi8dh64u9OOEyr7Ge7ACZfwgNM
1I7WZjyGUtdwBzr8u1XNhmIBjkWk9mAHmL0ynVZkeeFS6BU6hVrx7OUHu5ID
YgORLOure/AEd/fE4zvd2Pb6lvs1SBqp/cq5k8f37N+YlxEXGxsZGRYcEgI2
Iy48PDUiPj8xJjW3eMORNt34++9/+unT//zv/3789fcXM1hU4ZKCvM0ZkXlp
0SlJyZG+viEpSwv3X66+f/XSjSbegAteg5J4n3HaGQAZh6FAYAg2hQpHdpFH
v51k88XUuqr2LvW0Wzs0MiXqb8fC2x82ab16rQrEMQUVrtXwJNbnelJvc5e4
mkPge5+LmJQaFA8BBskhBhPXwOA4lSKXenDEptOrBqanZx0O26gZzJGU/ppb
h+9iL5272IvuLm/putvJ5TRduHC6dNeadUvS4yPDw8LCQsNCI0JCQVPPCMlb
HLYocdWiUydvP+pSz3z74Y+P//3y8zuA23Xt7KK0xSmLVwZEpgYHhfqB7UvM
WLNj16Zjj6+dvVVDFKkptwgqcbvaqUFVVbZLbWwCFglpqpfymzsH2BXdODT7
KVEmlQukXhWGhaaqDBQkWmWHsolP+a/FjGcKrVY68sVu6kB93UiVz5Ltso6u
yhoCDSNQ6+Awk8g28nJYIOS+HMLyVRrvzNC4VfhaKbSZaNjWJ+VlBx/Aztxt
662tutNRVUfldFy6f7u8ZMPaJUkxERHBIeEBgZHR4SG+0RH+frF5AclRa9Pz
dx45uP4oymTzfvzzt5na0zeKzy9PiMkIDVgT7Ofjv3DBVwt8Q0KiQAJdveHY
7Zv3K3vEGIj9rQCHVRN4AL58X6fFSenBQvsIJLkGDVcI5dMENlPv9Azx5Dql
3MJtbyUKBR1QI98CbTdNge7Gl9Ldw1Ov2bxnAzCRHtJKx3bhO25ChTK10EAn
87DtPCWWY0LPvhlhQeCu50M2t2RmUCQT8DBdt/fuOb6vtetSS29t3e0njfcg
yM57VdePHt2+elF6WmIEODZDwqKi4iPD/P0DgwMjwyKi/EMDgzLjlm3c+BBH
/+Gv3/mrypZu2xAVGRfi75McMH/BVz4+/gEBwSCsxuWtKdhWdrP6dptEODEj
6JmQtKKb+Iza0icaNbOPjOpnYPAAj8GkiK14ltZgtxgFNplTwJejnl6rwmGv
U7xeCGmCyhSzmVykasg7ZRr8247iMuuFusYuhw0mFvEhHRoDuo/aScU38U3c
ieFf9Cw6SzE4OWWxu+U8DhfSduPYxYMniruaajqbqsvPVt9r6u3qbrl6cVfx
1lUbVuekxkRFgmkuKiYqIioiODAkODA4OMB37nKKwLUrom5Yvvv0AbJ7dciS
0PCYQD+/hQsWLpi/wMc/KDw5MS4kNj1/7bL1u0/cutVs/H6GTBuXA7Tudsaj
1rvNNAqP0t+NIEsBMgEhFLaiFFiaQiVh4rVChV3OcUwzH1Y/vVQrHkf0tNfS
lSwGHMnlCEYn3v1kMvR2UiYZ3Y8JY3YSgwLr50oQHVx2D3pkdmh2wjIxjCL2
KczWd++4XIFWTO6uuX3zXPGudedxjW2tt8suPKzpgTI5zdcfXD5QvHNv0fKM
5MioKJA4wyIj4/KTw0MCQ0JCAoICAufWDaRFJhF/+eN71uGQ0JjgyEAf34UL
fXx8FizwCY1IWJyaHJeenbVy95EDJ8rONxmfqSwToxpuSxmWfGPLrnqqlEQj
dVJJTBmPhOvXPYO3w2FYrlpDxfcRXHqYzuIU1N+/9kTutsOrOnlqDA9AwuAc
l2ZAqTWrcOPVHVdw9XXa3g4unkdnEmB4C5JotdotIvrIcw2MN21VMvQDZJra
APRXlF/bXrCxaM9dyMOGS2ePXe/FMKR0yJObl4+dvrx3Qw44LkMCQsJCwsND
Ypfkx0aFgKWGBgcG+PiCthGaBXv74QV1dVBIaFhYgO/CucsLfBf6BYdFxOfk
xSWmJqXnrt5QsmPNnpvc718NOl02Do4tIfCfdhkmHGJ8fxse2oVTKRhN7c6h
tgf9FDKLRSA0dPMBVNPT6kZW7e2bWoaM2ohXAwgMnozsVaP72VJ3p+NnzKmO
Www8mt1bRgDkRBYdAReozI5hHVln977Ss/WmQSuZPKQS6aTk+ivnd25Yt3pz
4d6u1nuXT9+93wUOF0xLY/XNy9f2r1gEOnpUUEh4dFRQaEhSdkJsVHRETFRo
kG8AOBkDg8JzkW9fj0Bz/IOCwPp8FoD98/X38wsODo/NyE9Oys5csrFo05Zd
pRceC4b18nunsHyqiEVsBxhM1fCwyDC3X5+Bz+Xee6AY1xIE3b0CHAPV3d7Y
zKR1tCIl6JaHVGY3GyViYvgDAiKFJ61pgLmGccPfSVuwFPPMwKjbwsGj6XwT
DNcpezagw3PsfNUbpxbgWjwkuV1h49qwlVf2bt22YcXa9TvPIi5fuv3wVgNO
QEB09zQ/uHBw/RIQmVMz5k4ARqZkgKEnKiwsOj45LjzALwicgKEhsduBtz+N
PE3xCY8KDQBn30Kw6tDAQLCb8bnp6Tl5uSu27Nm+p/Ts4xaGRKMWyVQsAFeD
bL5IJGKVKqeKq7a5vB6LltmNkpLFtF40vgbOpJglGGQLTcYVyIRorMSqI2MA
x5CORET3drb31+lGHZPqZ1oeEaaiw0GcnbRzlA4kBquUA1ZQSIVq74ieybGw
GIBQTyJT+h5dLCnKW7xqz4bCwoa6C3cuVbQw6PjO5v6HJ3ZvWrI4NydnUXZe
Qkz2ln0r4+PjIyJiEtISo4Pn9MU/PDwiv37smx8/dCZGRoO5N8Av0N/fzz8k
JDIiPDZpUVbOkrXLVq7Zcqjk5Llr9QyOQiankBgQSidV3luPwqmU0K4mAq2/
lyAzOa1SJpokgFBYcMtHLqzzKbaLwOqqrelAYqVUiZ0jAEQ4CLG66d7TjhsC
r1c6oJHCR5Rtz5VoNI4glcn4SLEQppI5AJhqeNLldHMVbjpDTRBDtdSOihul
S5PSC9euzV17vvPamWt9eIDQ3dlXdbps26pFuasKCvfvWbWt5GjdjYLs5NjI
qJSMzKy4kMAgUF9CYzNPab/5+sNU9bKYqPDoEJByAvxDg0MjIyMT43NyVy/K
LyjYsm330XPnzl65262zCHDUToYaB+nrpyOeILUyyP0GMpGL7oCxhGyd3qFX
MiFU05/vaN0kBQkDPDl1/ti+2/1UOcLAh1OUnb1PO0RPe+5cAzw61wu9VTA5
2cX63onCw3qBCSaCj8SaFAbAOKbhe2yv5AoHINPjeDSjve3uldLF8fmr8lfn
b95y8d6dhkYYF4OD1d4sv3Bo+/pNO9YWHdu949C9q5eq7u9enZEaF5OSnBQZ
EhA8t8o9/pTo+es3717URyekxkRGhYIsEBwYOLcgJD19Ud6GdRu37CrYevDM
sROX7jf26czmAYNEDLgAZBeegu5yU3ueoPAURGtfDVJAIgOA3jlg5an+o4H0
4eo7xhAXn96//LC9gzlibuPyqGJEfS+Tgnta/lTqJHFfDcrdr5VuFPmFjiTD
kdlUDJPPVTifKfWDRquVND6itAB8PdfLFZpqzh3dnpOTGJu9ZGV+ykNR081W
OBMKb6+uuHDsQNn+4vXLtxbu3LvtyoWth+6UFy7JzkxOy4gLD/L3DQwIjkm6
Pfnjh/ffTjPywzPj4sBoOCdDEXHxyVm52XmrV2zYXlx8cNfmogP79p+u6xPh
SBIWlY1miihiNILdRmxr7gDoeHQ/8lGXnovh8XFog92t4nIanxJrK58Dda2X
Hz1ubVH87mxGyVhQyGMeHNN+7xpWMAQQJa89z/4jZYo1bAkaMMCpcDTvO410
xI6k8LUzJsD5QqsARHzzBAPdXHf60u5F8Ss2pSXF5zQ3QTpvNXZ3NDTdu37m
6KHyS6Vr9m9bsX7X+nVHju3YVly6fVleVnJySmwQ2KWAoKCsfW2DH3569366
7nR0QkJsfHx0YlJkQEBMYkbWopSclWvX79ixfffuA3v37i07fKuD4ZBBuSwR
iyLhYEEqIz+tb2IrcGha53WRXMpHt3Wz0GapcNYoQz9ldNWN4p5Ar5252yH9
Rs6XUVgyVi9exkE9uHahijjCkMNpb/+jJ/S1/gfZiZHOUnAIFN6pBIwKLkr+
etw5KZw748TEj+sQLEhL6Z2thVUPLkCbIP0lsaeNtmELpfHxzfJzZ09eP3po
34EtG3bt2LRi++Fd6wpK9q7JX7UkOz48KBjUyOCwArzZ++b91y8HN69NjYmP
jYlPSElMWhgUHZeUnBqfs3xFwZ5dWzbuKy3Zsv3ApTt1uslxk0MoV4q4PJKe
I5RUtTT3kdu7qWSESmkWohHl3TIt3vKCxuXQiP0dtO6Gx+XnbxG/Jh2uIvJo
BKlQLCHBr504VMGcgnK4bcSXJir1iZeDVdC5cAQSiRCriVgSmj/ztcumM4/N
eAFY7ytuG6/3cfHZVV0XQubhvvvP2uiWCaOQCOl4XNVd1VRfU3/xxrHinYUl
h7cWbivZs2PDnh2Fq9LSshLCQHoJDgmOOScZfvfNN9/brRfCElOiYuKjEsEX
/QIjkxIiIyIyl+YWbtuxc3/Rll07So6cu1zNdwgEBIDL5DApbDabIXrSXNfX
0XsdwRDKuoT6HoDZx+DghzydkMYWOrm1p6GqktAC9Qjvt7R3t4jYMp2or5/V
XrrjTvdoB1QlxE0bsY7BUQPExOhVIXvgEDy/h0ChT/w641FzXrhHJoCnhLd0
pEx17eTuU9cjY489/LFvHnTk8pXHp25XtXQ21DQ/fvrw0rmzp3asOXriYMme
g0f3Fm8+tG79yri4SLC+oIDw8CVd7pH3H75/LRNWhCcmz62USM5MT/QNiYwK
D46MSMxeuX797m1btq3dvLf4wLErNSKTzEusJDgcOijVpKRBnqqQrc29d1pI
UokKTugls0USKXtS0YmG3T2LJzR1P1bSKB908JqKflIDcUDHbn5qknbs2n/3
BkPbi2YOvOPaLJoBfreSQBnF4nB4JOOJcMLzdnbAw6W47e4RZbf6hYjllRde
OXkrLz3lBv3b/Dua019trbh1r625svJpXfWte3dvXDyxr+TyyePnjx8sLT24
Yk1Bel5KUFgA2L6w4MzbitHpt1+/fOYU3l2ZGJsSEx6aGJ8Y5xsO2kNUQnha
zqqt2/YeKNm+YfXmwydOn6kmY5mqUZdKJLDIYUgUubUdMHZDIVA4FgKXMOpg
aKaNx9GN0+rRPT3t/Rg0DKW+PyHpwlQfaLEOm0YmDCQGu5Nw89yjapIKBcFP
jj2b4kkV0jaeEG4yKenjMhow7JkSyQdovQyeyG4XS+imbotdffRay/Lqbdnw
Gd1VWlf2vJ2dD2E9Vddu3L935+Gdi2f3l+0ru3j45tWTh3dv2bg2OSs7OSrY
HxyegWFBu0WusWeTE5Muh6JzZ2xSTHhIZExIVNDC0IjYiJTMqKzlS3duLysp
Kd29ubB4f8m5GmI3kcURqUgskYKPqK68196pNBOhHSgcHc/CwwEiWczt5g9g
6pCQZhQHCiHp8BIzjFzRQhwEeB661KGS2z0UJrLR/ZtoSoik2FSWGVEfkSY2
9tO0EIhUSUToXg/QFMYqmEvu0PMFgO6pxIMm32guP8NMOKkdhx671xp9Dc6U
s+ruPrhVATretfP79+zet3f/8UvlZbt2rly6FFSR+DAQL4NAdw8vlZuHJhye
QZmo/tFmkMGDw8JBTfXzCYyIjlmSmZiycdX2HUVH9uws3rtzT8mBCw0As79b
CeV7Zl9oNOQeWDceBTNqWZQm8pBTzzCMGLVSJZfKJtahIO2P63raWXoLj8xB
XdcM1HdzBe2PeJi2RhLMZrb+fxNsgYsAY8j4lNeTRjFNRGQQaO01dahqxphV
xFX1O2dmnzGICpIT46G3ER/V7mLX3jPqLB2Pe+/g+jgu1JXKmoeXT5Vfvnul
ZO+hvUVFe44fv3bi4MbUrIzkmOjw4LkLrEPA5LCzk282Kh16ROOZLUvDosLD
gv39wJd8w0JCMpalpSav271xz84dJdu3FOwqO77/YBsLSsOwpBgIig2GoKdE
QMCjCRQKWSfaqB8x6IU0LJkA8CmEZmhvf/2jR01KAhdWD9CMtnNXmQT6taNq
LQwH6+rtML4gojB4XFs/Aq0xCbqv3OFzMSSbRUIXtHb1sLVivoCHoApGZwdZ
PK2tD8KtbKMI8IBdKaAh+tidZPGTiOvw6gdX71wvv3nu/Pkt2zdvP7C/9Oy5
42tyMuLjIsAMPxcQggNCAwuPPGbySALM/fK92bkhCRHBAWB28PUJCAoNz83K
yly0efP2jYf279i1rWjZpp37T8MMgl5WH47T1tqMostxvddKy+tJHBZNCEfA
VTatlE0ndaLpVDwKR4I3VF56oGxCsZBOuab7NhJF4J46Bpmth5P6ultVlTT2
mApX29ssmiQ3tnTjeuBwElNidjsYVXdFRhmut03UdZ078urloLylE06gEvCw
ZjkTxewmoQEq5nRZh7Kt4mHl7Wu1jx9dLdm9dcOesl0HDp48vzwtLTYqOGKO
qwMCAoJCApfuL+3raai4eqpgeXJyYERISJCvf6C/j19AUGxuzuKcxesLi3cX
7z92cFfx7l1Hz54naFhiajeshwGHt/YgxLy2ij3l1VA2CfQLHamTLHUr2cge
CEnJp7JJAthFFLYZQiMbB8FUhULzUczqxskblQQMrhKKIppMIiGrphtgk67C
+to6sH3kPjA6GcgtvVgpB45CGWAUF6/NNirrqm0i4Wq67zUbJVhieysVcuTa
7WbV3d7muzdv3716/ODOrYXrNhTv37XnwOmyNUlJoH4E+S30CQwACwnwy9td
WHHpYuGO/ZkZ4RFgVAoN+H+FBwYFpaXn5Wfkbt5TtPvYtr2HS0qKdpRevYug
aTkMCUFjUuNp0JYmngJy9e7+ajaHz6Cz+UyaitZN5+NqWuU6s5Sm/I0lxwB4
CBnLFyhpeKOECJP1dx/qQPR0dkqcSB7BMSkVAdReXB2kicCD9eKRKKpJhe3s
7uOw0FDEyJvBjssdEgEL04TvrurpboGLm7vwvTDRpu09NC6xB1X/6PqV2xfO
HS8r3r95966ibQV7SsoKM9JiIuZiO9g/sJAgn4TFBWVla7NWZUcnBPy/OOE7
t04+3N83PDkmfWnWkvXbikHdXL35wN49pUeuPGS1dHMpdBqH6tKSiIh7jzB6
uuTeYQRGymX1YBkqEoGj03Kr6vtaWk0ignFUTABQDRCUoA9k6grhFA8Qt96E
8BrqIUxA09OKMJoHFVwaGfa4duI9tg1DEfKc3LZespDYj4AKf/r0x5NjHUwm
Blf3pLX1yelW2NGCbkgzgYU1Svr0pJuXam5du3HyxIkzR4rX79y2bPuGFVt2
nFi9LD85NiLA96t/zZs37yv/4IDgiNwtq5NDI8DoDioqGAjnqgwO9fMNjUzK
zl+5csOGHXsO79u2feuWw+eOnXkihhT2UUmINgVrwIFtxbc+6NNZYCUVjXAp
0IMgAzg4QUviChgINJnGAHFF0NUBb+6owuH4RPjN5kqWyyAi0xQQYm8HlEVg
YihStZfAgzR3P0Ka5fW4vl6xC2iECIDeig5IveLzX4LLl9toZDT1VhuEXN2A
uNWMoYpFwBDj7i0+8sLDppsnyk5fOH+0+MC+4sINK/JWbS4+vGLDppTIEL+Q
pPwNBeuyFs6b7x8akx4X4u+70DfQ3xfM7v5zrhEcEeobEpWWsXjlss1r1+05
VXp4z/btm3aVlD3Aik420nolaoWcOvXeMy6o625l2EQochdWjOxUs1HQTmVP
JxbQcGAiTH2PWi4kEjr7SRSpHNN4Ye/Bhw/6TJquFi6gx1cScHy+2EziMbBY
IqS6qUkgQEF6sViYCAqR8s81YNs7vL+MnjmHpPJ7Na3tTxh0SktVz4BFSCD0
Xb6JECn59dXlV66fPX+4cM/JnQWblyxZs6Kg9My6zetyEiKWLd+4a+/pBx3V
BxP/tTA4LGDhwgW+C+ZW7/j7BfgtDAoKDo8ODApPWbR4WcGW1eu3lR7aX7az
+OSRc3c7lDT4+W54T2sjnEvA0Edc+D56X7+Nf+dRJSDuYKqJkLr2J2ieTKnn
iVXoDtmAQWgRkOhCvZBIYbZABN2dRNesAH9zPwaFP3EC1oXWkAC2sJPQdr+d
MEDugXa3dPWAD0OPrzPJLfjnr6rKyTghUUBswtHrKtY9oiMRbDYWw2JplBIo
vOnqxZPHL545e7x05771y1etLFy798zG9RuXJ4QG+cz/ChyeYYv3lCwOWBjs
u2BhwDwfHx/fudvcRg4hYWHBQZFZizJXFW1aXbj50Nm9h07t3n3l4iO4jtZ5
8hAdZfnAkjJaypvVtC6KgvBYaGLzVBo+Uwxgejp7m5QOochlkNKpQrYKChHo
VUKV0e2eYQm7mvEdHWyzyohG42nN127j2iEiFb/rWhce3tfGo3UgEI3Qvv4+
LMx+p6+7t9X0TENoalYSaQoS9UwdFa2AY9pIJLrOTLtNgjZaeNfPHD594ey5
0qKSA4Vrlq/ZsHbT8aK1K9ITAxeABu7n5wvWOC96adBXvgv/ffz+PN+5Ahf4
zC0RjFuUFxYan5aRt3pTweoNa3ZVnDl48eqenYcv9FKEAEiFIhdHDaez4A/7
ABNbS698KJhyCbthRBJLyJBPmHgmQT1eIqBTuIQ+DQJ1p9uswUkH30jwBAi2
sbeixeAZt1VUSwQGOVugQzUJzhzv4IllIkI3Ad3QS2qBQJ7ogBpIVwvLJRE8
KRdjCFJC49YntbSrdf3qAQYZ2tHfRXuw/VT9jeNlR8r2r1t37OjeLetWrl6z
Zt2RkjUrkhJDfX0WLpjvM/cp7sJ5gSv9vlqwcOHNa//y8wGf8/P19w1KzCpZ
5heblLZoWcHaTWu27ig/X3pkz5WSnWc6HPSRMQWl92ItrLeFLADY3ShT5Z1W
gNrlnCHDQFHHKXQSjV2jp8EocKKYpZRIx95zSBi9tIOptAgxFIGYA+2zv9M6
pf2n2y0WuYxWVc9ob6pBs7UAqhP2pAbaf73xPgoYb+ltbepVKmjIq0QGDUVX
8NrYzTf7kRgKiwB58qClu7n84IXq82eOHi8rPXfvZMnGbQUbly1bW3SsYEVW
ItiluRVGC+cvWLjAZ17YkfngN/OO7Z/nBz76LfgqujA1tnBrYHhCcvbaDRu3
bjm4vfTu4ZNle48dPlbjFZJlj1v74NQbZS00CR2CgqCgN2EMtrxHMdIPRSKJ
QksfgyQ1GpVsIhNgWd367yepsH61W8visHRyzNx/0hS3kUdEcqFsYnbAMiRh
9t2HXSq43ni9/2kXq64GAr1edaelh4dp7GxuoGhazmF6yFQYDHkWKYDRex5V
sxiM/nu3G+vauzpJDeUXy0HCrrhw+cDu3Ws2LN+6YcOxvTkpsQvn/7/6Fnw1
R5pfxZxY/G+w2HkPUv7t6xfg4xeVHxuet6Yw0S8yfun6gq2bNhce3nL6xPkD
Owp3ltwRswkWSnl7H6mHA6urJ7fU96Nk7f1Uvhlo5ro8o1a71FVVIRR6jBoe
B8DySPiJr/FwEZLCQ4u0BuLAwID3hUshBYQOiWbYPiIgCMTsp6ea+zbUVlxq
bK61KmvRdXcq79y4U4Gr7WisaRO3rGrnc/E4gNXJYxA4InQnICK1UOEERn/D
08bb505fOn/p4aVTRw+XHdu9qWjr0vx9JYvioiLn6lkwf3546Ly0+HmLzuZG
zf9q+741Vf/yDVwYlB4amRKdf+xackBk+uI1BZty1xbdayBxnhwsXr9130W+
nC1j3Giq7SUj7z1sayMyuA6HXW9QAEwDCyNhExl6r5GDwEgcLrNQiCbXiYd4
fVgestM5AqClWqtdwZyaJbW1it8MW9sojJqK2nYlk/igv7zq5P1qyCOYVE09
V/Ho1umOs7Lu5rbaPgHsOIEF6Wxs6qYwKWKVxmTSmo06vWHU04Zsrbh/ruTM
qVvXLp4/cuJY2Z6tezcVZew+sjw+KylmwfyFPv8OTl8wb93mf6XAIvPnLfDb
ds+cOi8wMHvtrhv3Dp8rajjlG52Us3Hj8v0YgdcmenJq25YdRQVlRCaqtxuK
gPV0U/FiAx5KkA6IAQ68ortfoO5owmL7eg3PJwjXGjG6SQWZxDaoccguugZZ
yRx7xxGo3cphB1PA4jbTplXKRoGu7/rjjtlaBKkJ8eDU4yZU2+MWvAp+6/7l
45d2c1XNLU0oMpvS/gDaX1/RjG6404XANj9k0REQno5MEzLoRNLNQ2fOXz51
7vLtC+ePHSsp21KwbMuhtRGn9kQtmr8w7N85uf9OWrz1Kz9Kwhqfr4LmBYoP
z8vZe+LkzbL7k5JdO85EhcTE722zvH0mbzp64MKZsiNFq7evaINjaltbWvsZ
VquW0NJQfaP0LAkvBto727BmIZtIqLqCGfU6AGZLK81lh9HEYjIVRTYyHjE8
U5POni4SY0TVRWXrTBNSeu95nbz1wVPio/oO/OOaM/erIKgnT2u7RaSzx4or
77aPIx/WsQAijHQKz3jaDSHiVRaptPmqRNXUZ2/reHjmLsmEciNKL1y4eP7c
xUvl1w6VH1m/dvmasi1JaUvSs/zn+82Lzk+NyS7P94MVhfvPzzgRuAez8Wxi
Zsi8HdPqrbtyVsfNi7ttfW5GlO/eceT8zfPHVuy6vmHt9b62/ocwfE8LB9by
8EknDNcK5cv6ASWrCScwa5SAgCt++Y3HIibyif0ODV4lkaJBaRTUds4wh2at
+GaCYdpMw+MUigFMz40HUsSVahgRdhDT/OAQrLkVVMZ+cheiet/Bg5tuqAQP
GTQoucch6gDZfExFYvFlDCqDpe+gsXeVnKqtqOttuPHg9KVjpy9evXzh3N4T
p/ZsW1GwuaQo6asAH9D4UqsPrcv3O/wwMqvp/jz/+fOid5fbV59f55Ny5/fp
XWFLSy4v39pcdWzT8rWFO84cOFq6veRgEYm++yEChehq6IMSCWLP+5mp6RGX
TdJXxxCgeipQEt3QpMtpnnj/rUGgIlNwNA9ab6TTO1kcAYqjV45qzN8z60mK
QSaRgBMrkZVdNxoYvTWEyp4rtbTaYzee1JAx7Q0dsOq2iv3b1l7okbNglXfw
uAfEN4PPxpgXjmPQTzmtj0kUCaOr7hoSeb+l7Nz1uUsHL9y7cf7ymQtnThwo
3nRgRcHemIDEfcEZVyj8tlsRC0Rd83zP4eb7/SsoKvjwSF7Aw9vSH5yDP9su
FldDy+PWFe0s3Vu249Cx0u37i4o2ZEEVaDa0p+NxJ4SO7uN7tAqRQKa3qIcd
DL2dRGZNv3FPiNVmwvC3lOGRVhxGa0ZL8HSJV0GT9XB+NVm5M99wa5swXJtc
JOexTrc/fvAUCcPgsbdutXLEHddrKH0Przch79xovX7r2p5KbndlzTZ4WwXv
ezPF2ddwvRf1hNNXTKL0wcprSHev3Ll15Hj5pbJzN86dunvz+vWLl85dOnhg
77ptJ5P85u9s6us5lbSkbFvAtS+n5mUzMv8VFun7r2xX4bx1tvfT7XCJfeBh
4/30rP2FW4q37z9x+MShHUd3rdi0JKVl0CQBYeJmTT+to0fKo9V1tFL5RIeX
KZdpOToDjcoY0PHaeu3CzilLL0WuZdSiEIqxWRsHTdUhJHKdasbYi2BahVQ+
hdalaaH01VJoVW7RrSsQk5n+lN54/XED7PLe/7+i9wySG83z9HQRp9uQYrUX
K2m1utvdmV71dfdMT3vLdhw2m2R3k2x6TxY9q4quqljeV2VWem+BBJBwmQAS
NhPpvavMyizvDcmibbbZnpnT7molhRT6opyviAAiEO8fz+/5BRB4r43cPnFq
3NqrPffhxGBmVqO1zGuG7goCGAJbfHP2ngmNQwfcM9y+1XT06OlLx5vu3brd
23b1xtHDB3fteff07w5oDZ1HX/nv/tvff/vVK/b8quJ/cLT8u3/fmNg36z27
sH/a/qFa+r9KI4ErJz78YOfHX+3b9e3JPfsP7v9k74433vnkXXPRPpKiNIMu
PMBSjggyhGVAY26O4LKJQMWpD+P+3DJoDQRG2B9XcpOlNDHUG7y/mCWCLO0A
BK7ww8wSTXCoFJLS43MQssaaimLLzNrNNiQXdYV1XYPDau25E5e7jndrseG2
K7+9U62aDrXidbb/dlRQhZ3X+BrRMagA7NjYrZOdLcdPnN9//G7bnY6bLTfP
nD+996tzHac+a3J8+le/3v2//d2lvbc/ZsDr/+/V04H/sL+j/Vhzem5pIxLO
y+1A0AiMDdz98JO9X+09dmjnnn27937wj6++9p9efaWJme7ERIPaEqjmZQYR
0rlkJhyczoYjYZRmsXA5y6QTo1NSdktqFPKsPxaY8FLVNZpAcSeN0jEozMoE
iuBSKtWJKrWJlTJVAb+Zq8BmXYInfD39rYA0fHTXzV5NGzS4X3klgLxtRMek
yNRgezbR6TJcDGZYZZv6ry87vtzX3dx58vj+M5dOXbre2tZ07kTTwWNs2Xf0
4rvv73h7rO/DHVe+ajvHMid834+XSui5d0+GisUycvyda9oD310512y4tOe9
9xrO8vVX3x3Zt+P1nedvD+uoSCm/WBtjnQZb20guUUwzQGDKriBzFBaLiYnS
1EIpMROYBjzlVYXd5UXiXheSKAb59EbI7QMRT8APByYEoCACkVQ8ZNbjHJb5
IVKI352av20wW51ee8dE9PS9jn1d6jFX3rL7SiZ6yVOOg0FfWXmnJna5tZ2R
QLx4yehRmzp8Z9/p+OqLaxeOXum9fq256dKRo31roeYvTjbtPHOpNbT1ZLLv
0NGW1YkjE+yWcL3t398I+oNh4ap+x6WOkdPHD3Xe/Oj4629+tGPPF7/fd/DQ
e9fWnj1//vj586cvnv0yPeaywMCdjolAuiRZaW4MiUa4QiRdT0VlHUx5YNhe
DQwaOKNHYDFEKJE6KLQ+xXlgHygyMAnZQ3XZ76ttGbU3IiEtcz+/klRMa3rc
bsRE6uWhsyesV1RjneDsEiPIw0lbxNPBybyrux7uGVU4RCrweOIuZhi1BpHx
9i8PHPnyxLWTF86fO3P2IrYyuPPoscPnr93d8/qXtx2rz1MXzz4fPdQwe+k/
H855rCDhH2/WXG9z3Th9/PKtYYvxjZd27Pjgsz1f7D2052JvR+vFC+cu3BWc
rrWUfQIbAvsujZ02NvAfWYiITCImpiWtB4UjlIu2iZQE9POg20P7cHw2J3Ci
GBf9UhjGBJaT19MzPh/sX/Z3XrHnx0YGspENlphSU6DR7Jr0dba1j5qGRyfa
NXpHupK9qOT0I1Yb6dXV4z3d9/Qsa90M9ugUoLVX3/Xt/j0fffHdiVOHz1w7
fkqSDuz/9vCRby9cevvw8fMnRyzOfPj6Sgb2d37FansSfk7PtX/b39zUp1O3
vvHG+WNnbu166f23L1//tHFaoz7+7q3fvPryS7t6O/f7Zye9N49dAU9q2k41
aXjDapQJmzFTTEpBYzYNzUdjSaPdOgZjTlIcGPPm1AlAhYc4SSZ5Mcrywe0E
iHgZS3pxvEcXnrhxcbzOrcQlrq2r06wkb1y5OUrYhvnx8eG7bYgZ8dGGsX7D
KOW2LMcPDF4axilrYF6lGj3cqModTb9/b8euo2cPnPruzHfdjs+/Pbv31Jkz
Z67fajneW5/DxvoFaXZeHPz8pR6ncUgAR9nh4503R0fbHX71vn88p9PsfPWj
l4Zm9+zd/fsv3t+1892P3nzvtc9GLM2n/TWJHByyX7urazt+KdKlmQtImMaE
rIY9CdwIVRKBCARO9IBZu8MHAiXjVSrFMzzD5ZwwIohBYjLDFflYefrFyuwi
KgnYmJ+zb0r+7vYR5wQ0caP56ng3QO7p6uxVavf3QJevS/qBUUHfvxB46+6h
CVtAoYnqVcqLl21R1+53X93x5Sd7Dx04vO802fzdmcPfnTl96tjJ7v4ugt1/
rzHmeJgmtUcP3dVeb50cUYd7z3cHyet3bWCu9cvxC7/6u9989NrZGcUHOz8/
su+bE9989fXnH7535XLHrc4civCj6i4N8c0XF8DQiJOBvR5Xokp5aE9iFXcH
XBMu9VV1MWq0gGmh42gflU2zTjw9VzSqOYwrLs/f5xLzhQePshAx9+SXp4k8
yG+x9gv3JrSouvNSj/k2ALe2jA6YWs5rL/zFy2wyUEjYbbPuX3ecNquI5i6Q
UfTc3vmrD47vfed3n3++e/fOnX1DHfS+3Wf2HTmw/+C+b8+0UdSN/3Uf+I3F
x6AE0nmwpa8zgFrdeMDTa7+pG7ADsq3pm9373/3bt1/5PJ4/seP9fUeP79t/
4OCxz9853nJhUNEFq3E7AJR9qguWkSlCZeZSmC0eJiNlQzDqdaO2uzrglLJc
KXgFzAnfOj7O1KwgmJFinM41F83GaNaPkaapx2GfCMOBwnxqLruyGVFhY/c8
1ot9xqFO7/jFLp2+87bK6Xa4qSCOEkBl2fPtxcMKhXNi0JA1Osffee1//Kvf
/u6dnZ/s2nP0m9bJpe5PDuz7ZufXxw/u2nsACl689s57/pBtHERFqkc9bBw2
H9ZDZLRf2wG7D8Hp9qt9H372xWu/fvndty3Lg7/56OMvdp/4tv27g/t3fWVW
Hj9xsMmoTUzefxQR8jVBDvJ+T5a1Bxw2UDk+5O7u4+82hfK3b8SEQhIwURjZ
019LqazqxKQjJMRnNsNB0cN4ubPCdp0LcXj/5QuXTeX6oyeiqbdF4b9mMigv
X+s/pRy1nb4x2tdluHnhjvumbdxRzcOHjzqNIyOtYxIdvX1b57r62lsfvvfB
zpP7zhxpms2d+OzrvTt3f3Fo7zc62nqwX9kaRr2+oN/JBjTpuPrWKbBNd/f2
RVPPwXMK58VDdy/seu/NT2+++saR6WT7hPr0vsNH5P4jzdcPNrvdlouDkIOZ
fvaHp5H091uhX2Z8ZDJvGO4bs2oVRJ6mw3Rl5ifXKX3ETQ87EySM9ANwl35Y
mM0aVCGq8nOhKLEYdBpZ2TAoFzLo8KW9wxBQ2sjcOXljwu+watrOtQxfH5rQ
H2xrOnng2MFb11o19pGxhA4l7hnd53uuXYJi1D14JmA58fobH7+3f/fh82da
8Vjlzsd7D37++YHf7+Jys5l4nB25h3ByIEHbnZS1v9sAjhqPftdr+vjitZuW
Ay1e+61Pf/cXbYc/G45npzhn9NSZA3S2qeXy+aZLFyycwcNDC48ePy7j208y
2fkMaYVqJh2gtIxHS0pOwCMMp7rXwkIe5HYXkcLbIdBqNbmnMuPXhuzUi2Uk
z8MO4+XEs9rG47ZGlrc2B6yWTJ100pyD1Ljbj7X29SqQjstnL9w9dfnTr64d
ugoNG9PtX13inPqLluGr/SG8WvLv+lT369+88+Gnuw6ePjOMfJN4MP7Z7pMH
v/5GVdleefyTu61nwoVhNC7zNlfEfN011ONw2K+/+sl3+1TGk01K/sE0dfJU
rL4SrI189NEF89nP+pbONHf23mtVaTTD+5V0eUGM+9XgLAkKeQQ0MgThViET
cVdLDSc9V3WIRpir+Z3QifNDE23mzIhRbS5PG1UjYHD55wyQcxlsp1VPV39h
zn/ZMzR84xZrQ5LRjnEZc5iMd07fbr9kga4broyNtF3tbj506LzVMJob+Prt
4XjXDSd5TU1LkNvxnfbjl1/58Msv93997Ryo+WBf7WmQZnx9O28pe0Fue/q7
sTsTPgXvNHtZr2BoHTtzT8FFsAs7XvvvLdoTTTvfNwgL2+vV2Inm5MB7Oz88
5f707Mq9cz0DCtX4sGpS1xep5H1QwKqG3JgoWNCJEZPK7k74nITEAgCq7Ldi
/gQ5rImZDl27cbHfB6smOvhpEiZctXThn8ZUnLZhCvmtxdtXzl3rO37jktEV
4qNjJwWIpLBdn/T2DPKnzxLNI11tfW3jxz46hchArP3Se9e8HrcWu6WVO3fD
WqbnL3/34ZffHT554dJZ7NZNiK78NNO6Y/enr7fcGCnGNj0Owl3Mlj229gG3
b+Rq84GbI/zFSxn6zK/16JlDez/DZbHLV6V/O44Nvbbjjd/dNb7DO870D9zu
1mq0/VDT7RLPY1BUAS8tE7M47BuCGE7hkgkqRHggfHR8yNlhsN4dhCI3jl/4
rnmI7FET47V8UMbjgO350pDBoIxSuae5u2evXuza+8ZutRgMzVruUmoPWlS8
dEZlsF1oR/eP6e4ODvY3H/lYV8hFod5vriizpXaludvde8rmlG989srrXxw4
/u2hE99ypPPO7/fxL4pDH3zy7qWJcTfR63CQ8tM5wOZ1KToB3TdHznQqmV2/
2h8qj4xG+5vsMjpwu9Xmmc14nJY33nrpN29GhpT2k+0To8MabV+TQnMvAiME
mzFb8nFZzkIkbFD1XDdCbFCSKIToPrEEabu8ll6tyzl46sumwXG+1yWWt8kS
5bc4U7/MBtEkzE1uRzvbTn/d3Hp0XObhaA7Ww3qvLUZ095nb7x0Y5w7qhned
aFac/eQzE1LkLf2XLgcTIK8Ahl06Zz8dUH/++lcnjx/bc/7AcPTye5/s/eR9
4MUGfuLVi6quk5d7X9fNLmWdzmgASskQ+ebHFzqU0Kef/9bCl1JZNmbbd+jY
9YzqFjNfP+V6683fvP5Ke66z7/D19vFRpd5iHO3XB9wuBJ1MqnyXDggxv6eR
5WyfA2JjdDlAkYaJmXGlUacdgDV6u/HuV/cm7OCgsrJd6MdBeK2W+UEgH9jH
SvnZ/svX3zzWCScpko4rTQLssBPBkdvB8e5rp4bAq8jFD9//Zl/X7w8hXUya
gKUi58FOGJFxxKmELUrLiV3XL/XdOHleMTP8wf69H7z/1stjDx9W7zSprzQE
9nZx2SnqxsZ7Tnf9OMPvePfqaS1743/56wOCmUj5TJjm8pEmW0+HZ2gmQn24
d9dbr30gypd/s/v41ZYuhUbX+s4p1mg3OqMLqLHl8LjGj0UnV54+KQdSkg5M
8V477cccuLbNgvSPu0y2RiZrR8fUwMxag6kgsyYnwoRwy14PlujdzddQKUbR
vhLXdnGMMI+FEMdhzVDf5Vs9Xbhi/+6/Pf7V6Rv9qsswtpCVebsxpbwXB82o
XnvG7kh2NZ0cmLh1V+Du7vl2x1tvvP3pP9zaerwYKOJ6J/czedadiAAnT3Ye
qN+PHH2r/ZQTULw99MVbDoGUQG0gcuPkGHBdvWssl/l2T+jNX//90Y22V3cf
P9JjuDdEO661EF0KtQ0MzsWLhaSQRL2x7e0Hzx6kSdxqdHMEHeD5AMbBWMdE
ENYrBodNI8NmiNrYiIcjdi4pEBiwB8pH/JmRY+2aiGDyE7GS5AUIo55RGFQD
us4L42ch/uz1I//zy1+Z2nSGQb8rs76UdKLhSKhQpvt0+p3o8VTlVge43Mnq
saZPP3zrH1964/VXXzm88P3S6vPadPnGOXsuKdo+O9N+BX9eaPn7K62Izq0p
nG7tic0pWkn/48iVCRzVnSLCuba/srO/fvXv3FNn3v3k433WkZPdBakPNFAK
K8hE1398Nj9bwAlPrDC7VfM4IrpRJixI1XSyGJt3mlg+v7I9ife1d3QNaNyz
G1D05yROpypl690QnaTSMbTXpvajhl4uY9KBtKPf7UC091QtLcPNsaPdsfOv
fduVbht1wn4+ufX9NiFNxpNI8gFwzxi8+/qpLWw0Wze5+tiv3vloV9u46o7e
dOXu9OPF+YfVfeerc7XWzsjNw7dbO5YmJ46aOLEoZZGx8OQJwwODTqw/9CrJ
ZKy/uhyS711bTIWjQqzc/MVv396hOnVAxDFMjfr1aDYd21isL06JHmKqEIuV
QEeUMXq8/qm0jeXKzyOF9Qcby/WFH6dxh7qn9SL0wOeYe5BhRFiKR0UoHYrm
I2542MFw4UDE23NhoIvwqG0UYFM5rQLWGyldO35oKP1W58DVCKUS6/88DW/M
EDpyac1hsh/7yy+zc9hiih3ArW++8bmmde/nHx9rdodccz9uzm/PW8qr5/6m
lfedutTRGilbIsX6fDY82zmmIcI3TYsLwfg0h9aKBmDEEYqnZ4opjTHjDq9P
nXr5pY+sgRhcYMPRMkln6lI+T9djaPTnOll0GuCoKHIGVy7jLtSMvgezEBpJ
5Qsy7XGAMdFx/tLykifoD9ZyWTaXjviS2WRxiiFEJ6E+pcSME1dajitdXlgg
fDTFecb8sZniwD8MBt8Yu6cisUhaWf1TfvW+ut8Gbd23mYbePjPxuLIS6rXn
W371X/7LTWTfa2/87bvfWWxH/M+eLGy9WLj3q481ftIyfKyJqufjYZGbKm7p
WrTjmFEpJrcfTWXRTF3EEXkh7DiNFzK4DChTzjdePqkvLqdyHOCQfThP8qHS
/SezxdiTQj5MhiioPC/5lEAZ9dS1g+T6osXUj4AaPUL7BSkxX7TFH4sAS24j
zmSsWI2IcS4u2cxmSh46ryetipYbfbZBnBiO0naQsLtcA+Xon2bC+l2a4NAF
Gw9x7JP1/HScg/HyQjwhnvj7/5j+U8J/TlXf99cf8k+312ay3v6WLzU3/kax
/v36+sMb/7iDYLy+xI391Jz9SlT0hNLbGeNIG7jGKVTDyMKUu5wk42uPHnrx
QShMS8mcCKIdcMTkVIBNlyxalUbO+PhQ/f4fNsqL64liSqiuE2hVsjqs1ZzH
2jGMTD9Nxtt0FeBq67nxIaPBGVxdelAF8PCazTNGp2rpQKYhzR7QX4r4yAmo
kcUcbtaEiQNXcJvJhTcAFbl+szjv7sBzJ+8SSO8928JCaH6jVlmulFeClFvx
1yf/iZ1vR6qvvZR8oTr4+b6LtvL9KfvEf/OKd/oP9x88xV2pBuEsQac+H9F4
yVJALtY3OWTBxw/s+fAQuRkM8NFwfmML5abt58Y7ZTZZqS2meU27GtGBLidu
9GNejEtWllf9XjJWr6f9cr6Ppx28JTcXBYIBLPxTJZtMBhMu5eVOlQ5Wj07A
2el4GZK0wwMQnZn0hgmPBHji8aSYczpoKRYuiWAyI040yOwEGVFymS5dCi1P
xmOfNAFGNin6ZrbKojzNRBY2E2Y18h/fWF3acBbkl6H100eaf3X613/xm4vA
3HPbiF8i1h9u/euT4h01abdGkGwCN55gc2ERm91egtsTYOvli12R2TjMgcLa
DMemvztB4yKKUSYvlw7iNKE12Lmi3kB5TEKEkQoIz2KolMtn5khXvBCwc6VJ
0jbehmdL8kg0UgiR0dhiNRtmrVp7uD5DmjCznxamFySRZ4gJo5soxqu8CYKB
kWHCH8D5lF1jtxvsFEmRVy8HXevTzrtYICbTW0w6iQXCEBhd2sRi/9/61+2l
59uphSl5DfryvHPY9up/+u2H+z+/s7GVd97STG483HwC3MH9IilVyri23yWw
TCiUX6lEJbnrRme/QyrnPBOhWtTPSUGgFYiGGhD0u2sFN+pyy1FsvTGcLhXI
BYWIW2ZB2o3GJhefhuEXMYCMZ+mJ8T6ccoZr1UJ+vmKyRVNxRGfRGYQQPWEA
5pZ92cVChI9hZt2EL0OnCjG7Y0Ct3H/2xD0qQphNJofP64slxYEO1iAXIomQ
U+8QN0UvTtULdl989d+eP/6Xgh8p/vCksri0VQkXXUDo5l/+zUuvnRr5n6yw
IZzR3Zx8tLEZY9woDzi4LBdU2UCu21uWg4WsFLJfdFrHqeAkjFApHxkIRVUw
G/dQqaLRFd+IpxiPh0fiYSeLQ25aCEoMkvJk8kaA5Gt89E8rGC8k83MbSTjG
ehcf1mdW84g3Vp6fqUb9Do8bDni0DghLT3oZb9BhMuiogD/jT6EDI2OmnrMX
xzxwIMPo7WjIS0spEihkogygsvNhbnWNmawJ81OpGMn/8//+0x+XAPLpk+2F
6RTZ5qAmM8nTO956+/3fZ2/eUn36uTTLba8t3F+sSWYOdyVqQmI2G0RwbzRE
+2g8uoqCgteOcoxQSFIMjXGCiwnIkAX3x0GgEFUHchmZLkqQFRanA0Imiqen
vIV4ysUnjOlHj5OMPzy5/Pz5dErGE2sv1jE8FS/QLn8kF8lWSRx1WiwKkefN
JAfaAMgJGulUIOBy2VomTJf7nRht8VGdChBmMXa+wOB2o2FMn5nO5Go17oc/
/fyjj0oi2JPvn/08BeX+tLW1Woi0/4MSwpar7Fzebs1q1Saq6y3r6Pr/E+DX
N5+UXGTjmVmaclJAqZSSxCnGR7momWcriwtJxoFg1URQ9rmoIMz6p7JeXErg
lfs1gy2bTJUigr9jRDMZxGsFWtzMyrnpilw14kI66/MGCgXe7xVlurayvP1D
1OzNRPsbdzCi/wPfrXZ6dFazdkQNhewWUnZrLVK5MB0tLVKBAAmgKMbIqDLA
IJLksnaNeb3BsJ8EAolYibeYqfzPm1UfYi8+rG3XzL7JqYUHczxullyWtaVM
/o+PfvjXSc1wzdY3/M7qi5/rVPzR8xTiTyYfJwnKq4MrdWkxyFTZhlAUavNP
Hstmz3zWI4P+ZEwQxOpULcqFJ//48y+yLVbdeNrISI1HqwDIbBBDF+by2c37
aYhOMamGgPhC5YgDRQPc8taj1Ye/zDAEjUMYpLD88Fzvtg/orbbBITVM6Iws
q7Nw2VjSPzCxEbQ3qpvkZcsFOea1OtSYyQyKxYyoMWAQSXhg6/h+1A4/2lz0
G/inU3UMmCrfL81OIQg40OXfqknC6kZezuSMlnBEqflxixFDsez6VpoKyT9k
cC+kM/LpSTnOUwGXU0GUk9WnP7HKaMER9APFXDotxKXtKERPcTOppSwrVpZL
k98/XQ9DDkxOUHEvwxdZMBuU56S6n7VBXL5EOgMwHck8/sMP2394lJDYUCyK
hJ78Qnvys2GNu+tmp0VptHMmgI+V2Tjl6OdmJyE4nwqm4n5A3e5C1O58KSJz
jOQd0yCk2wqg7BAu3bT65ooMtjKPTqxusrN8ssg5SbLf/HA9k/LQz0w7X99/
OrpASH9c8wyXHmXlP7++WniSYiEsKuJSiEhu4U4nCLoiaENp1xhhJiRG/YQY
JEK54mRKguIJrtO7vTzH5ZJuUIgl61kU9xE5PxTOxoRkiQ+CrJATXL5UISog
OCtHorPP/uWnf14nJut5lIhvbCZzP/2UYCHWxwFjQa9TSwfoNC1EyVELiBVr
AovpmlsA911H3j7qLpUpiePCCdzngwwOlollBYfbKkelbG2Ot21te3E+Ec9O
5wSOWXq4ivdLwa2xJmDy4fe1yJOlDI+LAsEXa+Q0yj+jAZuJZD1YsFCfSpF+
r3PcHSRTQqgcjOkUSDpFMxkqE+YDqfLE7e7qP/8s8OshR4/aES4GMBjwYCgU
K4XlTFhmXbHpIoeGc2yQIbmplWBQXvy3f/kpSOUXGbe7Oju1uRjKp/jSVMwM
ZtFxFSmgIT+dYHpH7OEkDQ+c++aYssAMWPKEethZy9ohPhiK4f1G0ksxVqsH
iwsjkBhM5lKxxRVeIGwhWQw1MqrUCOqE35lZCA0Xqo+flacmUzIhS0iATWFM
Vv6xbLD6ccpLhsXq41+yeBQMuCQ3QrhIj58Yu+XLpKUckwihPkKrVA26H/z0
aHJjSnNFrYCZEB6ox8dN9tRkzOsImVTuyGxlLsuXWBhnxPJ//YHJRTf/j3+9
P7NZSTEWEOJSUiAMOx0MbrQnsF4jRhtRVpQNlum1KOeDjS1nXTLuNhq4mHng
lqkcc/rZfDqqgyMQGPQ7OdhIe8l6WWbCi5tTbN5yCyxlhHSOT62UK3E8HMmV
hEJh9fHD5cWVlenHy6hPzGHAdGDuXzxW3BVK+QQUj8yU/UsViUpQVAp1+b0e
jz0UBLuNVkzySoKBcmnGhJ9+XNt6HlKjvphYDlHLz4QeW31GBtEA0goKmUgo
Fy+LjsZcl+YeLdepuac//WFNCMV9Nr3ZgTCcGFO5vADm4ClNgKLMYJQNRR/n
4yx6r10quZEsy0d95GQuw1igWErOT+UzEbJJRfqKyFrE6+K2NtNRE8GX68UK
ZIKpSGqKcaYWZiSM1xkz0fnppMBGxVAqW8wWG1Ukz5vFZOBfIzhm44tOAkWc
wZDP52NTLCvOp4BExEJlorQP0g11YkJ1bnV9rhx0r72YmV9djvq9fjsXoiI/
/t+psfUHGZXHl+IYMRoKUGgqaacjc1Pl6a2fZ1eqle3SPXB2GVdGpqRkOZbW
dyFOqw1yidkYTwcb1XFGYZGImxcu7jViQpBOFLz6UHr64YvHc5MrFfVtRKhN
jPrBVCZRSIUnoNl1n20YF5eelUkKNAbLIu8Pz85zGD06EKOZVDXIUD46WKwV
vJAcYhk7lplbyYuCE0vYQbOLVGkQhMS8oj9NMIVCNJH2C5QpTufSTCIWT8US
uUyk8OPazPzi1uOlGWwAYsXU/Gao/uJJlRDDoT9v6d4IUTaNluoURkFscOvf
HrKRYrAwX60MeOLzvsmZNrvWbXJAIF7AjbG8KrS2hOtiiKJlbKzPFYiE4uWp
DM/Rjaen9HS9JljbWxVilaCi2RxJuLSqe77nWEPhjMXHP1aDMr9UCQoUU6wl
aJc7wBN0ajIYCBWrSzO+cBYh4yLtAFP3N9aTUS8x47CQKEBAFESGCQLieb+8
kptBRryN5Qam1pMCwXIB1B8ThSc/5NyV2uwf/vjTpBtqpGMmJS892nhUDdEI
KZBOwYfGpmsupZnEcY6a+RmCoIUpJrOgHYrVxrDoiBEzGT0+koAxnyyk16aY
ZExyQVw6WyplM2wy7KcYLlIoRDKl+CTPID0DfWo+lkI92rtDA+Ojpi1Jc9vu
DT+cXObhYGJSFjg8X+Uwd6ggCTy7GA/nqpzJ6I+Vg3owwYFQ8cn0yv0pGqli
Rkg37MH8KIwSMCLEnS45WoonudRyRZheeppEijq/WsmE0dzTWWdIspoy3//w
YBoVZS5OCQuzCzM8CuNJSC3Fa4+qftRuxd06pyM2O4Nh8wI5IzvVFa7f4q3a
bHYriIAUPbUkAvEUBoUSciCZpAhRdGesHtjZ36fVYcFKWWQpIVUTm08OB1J0
j35QpaTDZktVQG65AtLyckbZDDPFlBxNFcohkfAHSUq20ywpMARgQek4B7Gx
EB6Zrc+VIxnWifnMdqfegnvdLguLY+GIrlUbS8bqMWa1vvF/Pt544MP1essI
FYCI+U0ayKgOKqlE/fl6WLKPBgJUtLYUbTh3ldSkNrcyHIh6LbDVYiTWHi3i
9SpczkN8F0c7MA2pgdyjNg/BE5GclGiki4OfEr0pcrxv3BHkTXbtSPfAcIct
6uhXupkAzlZDZtjtYgOu/k6Gw5OhKufw14pi6lnOAIT4eIOn5elKIpLgG76B
+BE04Jb8Uj6Ki2XOI4oYg4VXeJanGafF7XRq1HDMh2o5AY/xmmu9Y1YM8cIi
lZxZzMzU69I1DA3phvyVzQIUQq0IkH5YX5wLJhVX7ASWWo4FGHAmh07/eT8r
EGCDkKeR+LFnq/R6wbRF2SUnzoUpb/+AMuAyebgG/YWi4YYCNhP5TDk85lRZ
BzUmRauJgscHFNFA5+0TV/2ZTDCQK/OjA4F80oJ5Fb1aMVloJHcGwTfXyjnZ
L01FQ7laQWLKISHlJYiIHmdZvlCpzs7er1HhsAEWKnkyKXtoCgYMdo/HkMhT
FOgj0rIA91wZRowetwWnaI4XI4UE1gjuIQ8QexxhSrOiRXq0uBaJSLx88aSc
iyymWJquT8t+byTMmFyQByajkDe9vFCvhL1FG2LQGEca3jaod5pijApK/vnj
3ht3OhCTo1rLC63DiO22445G4225fhtJuCj1UNOxLicXS6QLMWwMxbl0xXZn
yDTUiEIG9hF47sWUIzoZidGR2Wo8wafjBpcvFMoSPhIL1pbn16blXNInuoHC
Jh+gQVEC/AFM76+6dFIQNWFkqlyLCj4C1ToAIyJQvBROJvOTxSLvpk3OjVne
P43AD6Ol7//8M2FZGo4uZmoFAotPrmYR0J1CBnQkRpKxgJie23i8luR9NjWg
ar/ZS5IYbRg0c3Y8y2YpBLb2ewAtGem3pEFQ8uqPHyCsp28YE9RgA4u2o2du
UEwgPP2gEojn0hvbc9KEeqg/HvNiTIxiVhYVI5v3GVRYmW+UgOBkEnP7gqAU
cdh5KjM5N5sL0FyI76ZnEdIEFJhhk7fAWeeXLeWoP8QiGcHkD4l+1miEfLNV
Dy0ZLIGGHKwv1HIilt1e5kyq3IY3Uw5tlTkuE6ksVdNJuPLHhZSIY7EgrBiG
IK8P1pqC8/c37/+84oU6M/igd9HuyHr0apUCSkQL07EwhptgiYpP59Orm4vF
iHb/sQw6FChhQ8xkFO/TdfW6gjw+GLq/VrJzy0trM/WofyKXowhfAyiR+1y7
9Ms0DhcXchFeTGenUh4AAEjSISRqJR9fLWGpVAzNZEwAGCq6BlwKIO/CJjVW
go7IRCXsJqweNium6UC2LIWzOMwWVx8trzx4vFXPZteoW1Qh4AuO3ILqk5yP
Wby/mQpBU3E2LDDeQNA8NG43ADKrVvCF7UVy8Ze02haQimraQ4sqq03bMzSb
m65u1/1+ZvPnP/307EVRCFuNCIbAYa8UowOTWTJH2sWxtnZBXGbv4KWNqSyf
SacW71eys0kOdkM8iK6su6BnyzzhL+VCDVPM1EUSQa0GOlmv1DaXsqkpipHl
5JpgsrlIHHDRTo0LNqNqBUjIISxTyJcWFhJEsEASXFAUgrFMPp8rTk3ObNxf
nsKCwDDBqB2N/nX4cmmSHAGXHm6nXMK9Nh9J4iZyrG9obMLgi5Y1EFue8bHV
B9G6KvVAZ9ahUVBt16s9uepyfGW1Lgu55aVwfGH0A317XxDUOAGI4SPPvDs1
s0GfoDONgvGfk634OHk/6MyXQ7XlXLnC4cG0xLn0yRUXMj8lkeFKRgpHWIkU
0l6vB5ravv8oruSKUYN2jAnk1ilO3eF2AV4SdGq8NgjQxacREBMMvePKIKIZ
glC3pXGYkSLJWATUeQJr3/+wwAKOEbULhkk/1qtblOyIO/vgRRzgA1dVhMcL
uyd6RkaUSqcHGHejJCO4nDMPolB1RTdiMvJRbEzrgQNz01m5tpAh7LFqdrUW
P3bH445z4/c0RoaOVE23XEt5Pu1QubDog8KgzePIMOXcdLScXt7K+MTlNQ6C
LeR0kWroqTtYyIQ5jvSRklMKkVPP1qKLj0uw7MdAhQmqrvLxgBGiUNxqUvYo
xl10eL4M2XFmeGxMjTsVnSazrXu8bUwPeUkuKDDRRz/XG5Q3291cEHKbzE6v
FHbbfemtJ/crtEfSd5OocsJEIHfahkcduMEc8BKQS2sic4ncypyue9wak4X2
dkSuzC7EgNDWk6oUqS08KIbge5qkbqD5qs0ZEOMcSMVWlmXOZU1EAjMLMi8l
CXemkipIxUo15acrghewuwB6vtxYTUSYlCUWJvFoBqYyqa0XGTstry7NNVbW
A/nrGwsPtlaWVucKtOBtbrujdRgaeIFIVme2kLbRocudCqN7tGfCH0RpxOOX
y6vznEnrVk4AKFfNoA6rDUC9NFtbKlReyE6EMNCieWzcwLrbh+6ZKICtiajZ
YHAB1kB4eb6/c9Cd4WS3h4QDlRWWT4UfPEnxueWpSDbmguOjOgCNJGAkmXbb
2IXF2URAoJzOeIlngpzBC3qZaqaSyyYlL2z1gzas4BdXKrTXz3F2n88bzsST
K3Uy8OBxnWAYQmus53mZpdLxZDJdX370/MlCJXy7ubPHOW51Orw+EbtrDRsv
3+wHdKo/X7+AwoDSSJJeNjWVF+Fxo9UhbeYFxmO2oyiSncyIwV8yHgKBRdoH
q4f7RcHWMUp4+dm6C/U4fYRB0ccuksOdrjIbj2hTfqgR25EME5pcaKCllC4V
6/kaEa2kilGFSowHqPjqfD4tNjTc5msoKWG4bXRbzcnJyXQlR0CA0w4QvloU
n1wr82QAt6A+tBALM8m6IG3OVmQ84NYO4jE0gHElM7XocvikZGV6Jgt09PTp
7WZAb6Vtdkc+Zjw/FpzQYzCLsL5u2KggZNJkBalwPiv4AlZ+LRSKBzjOOBYI
Byir5/mC3eolBNBgdHlvW2i92cgIYqqIlxEH73GAFnsO69cZiqw8WV+zDaHp
iCiDCBWN+EPz66WGukeMUiLTUGwqwien5zYWooLf7WVsoclCmEEM9+weA56v
Z2JBo8nptnqjXLaSTT16KPkdFoigsEahJyGGq2zEBAlhGBIiuEaDLVR1C5F7
PWNOzOJOFjKM3WgHlB4fhCHIZM6l68cU15w0yiBsazursvjgMDNgoF1YKFus
AGBR2wRmq6Qe9EJOwGWZ3xZvNMu0Z6jXjk5M6LuVFI3Kcpj3OmxkY5C9Upwj
cS5GZ8oPmOZhlZhoyAcJy7EGramZXDIP2V2eUlb+8987Mol4uULDiN4CCrX5
mWlfl9sJA1AkW81QGABZXHaI9LPpQqS8nWK8Spvfh/kpAIQdaHUJp2OUKAkY
zuK3FNUiVRi/2dY/bFJ0WyEpkWBJ98AIjHhTs4LTo7cALX1myZ/eIo90g916
osHuRgke1IA+ORnnfZ6RcKpnBBwnBNYLGIOPSuov7WE/rDS47SNGsxbru+mA
3Q2c2m2Uy2TzBFdXbChpjhTSXZfdAMhKgj8oQVyWpUzG8PM1xqVEAkIwQGiF
TDhSqcRsLhgFsdRUfS7pACHOSSxLQkTymlw2i8XkZRFfLhNIyaysMGIk5mNx
UwAhF9cdzlwxHvRhnnhep02UZbfFEcCZib5R27AWRMMyMNrTBYSmZRtqu6ND
hwcm/MXnS5OMH/RAgMFqGlMN3uyc0LgJXkadXMQ8pOy/NiELrNNOrm0mutqY
MD50d0g3oXO4Te0TTAgnYNto381ug9Wg01rtHur/B1Xae90=
"], {{0, 224}, {224, 0}}, {0, 255},
ColorFunction->GrayLevel],
BoxForm`ImageTag[
     "Byte", ColorSpace -> "Grayscale", Interleaving -> None],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{126., Automatic},
ImageSizeRaw->{224, 224},
PlotRange->{{0, 224}, {0, 224}}]\)]
Out[3]=

Performance evaluation

Get a color image:

In[4]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/4f47df01-18a8-4d8c-9f61-8f1828fd1a0a"]

Compare the colorization performed by the net with the ground truth:

In[5]:=
With[{grayscale = ColorConvert[img, "Grayscale"]},
 <|"Input" -> Image[grayscale, ImageSize -> 224], "Prediction" -> Image[netevaluation[grayscale], ImageSize -> 224], "GroundTruth" -> Image[img, ImageSize -> 224]|>
 ]
Out[5]=

Net information

Inspect the number of parameters of all arrays in the net:

In[6]:=
NetInformation[
 NetModel[
  "ColorNet Image Colorization Trained on ImageNet Competition Data"], "ArraysElementCounts"]
Out[6]=

Obtain the total number of parameters:

In[7]:=
NetInformation[
 NetModel[
  "ColorNet Image Colorization Trained on ImageNet Competition Data"], "ArraysTotalElementCount"]
Out[7]=

Obtain the layer type counts:

In[8]:=
NetInformation[
 NetModel[
  "ColorNet Image Colorization Trained on ImageNet Competition Data"], "LayerTypeCounts"]
Out[8]=

Display the summary graphic:

In[9]:=
NetInformation[
 NetModel[
  "ColorNet Image Colorization Trained on ImageNet Competition Data"], "SummaryGraphic"]
Out[9]=

Export to MXNet

Export the net into a format that can be opened in MXNet:

In[10]:=
jsonPath = Export[FileNameJoin[{$TemporaryDirectory, "net.json"}], NetModel[
   "ColorNet Image Colorization Trained on ImageNet Competition Data"], "MXNet"]
Out[10]=

Export also creates a net.params file containing parameters:

In[11]:=
paramPath = FileNameJoin[{DirectoryName[jsonPath], "net.params"}]
Out[11]=

Get the size of the parameter file:

In[12]:=
FileByteCount[paramPath]
Out[12]=

The size is similar to the byte count of the resource object:

In[13]:=
ResourceObject[
  "ColorNet Image Colorization Trained on ImageNet Competition Data"]["ByteCount"]
Out[13]=

Represent the MXNet net as a graph:

In[14]:=
Import[jsonPath, {"MXNet", "NodeGraphPlot"}]
Out[14]=

Requirements

Wolfram Language 11.2 (September 2017) or above

Resource History

Reference