ShuffleNet-V2 Trained on ImageNet Competition Data

Identify the main object in an image

Released in 2018, this model features pointwise group convolutions and bottleneck-like structures. A "channel shuffle" operation is introduced to enable information flow between different groups of channels and improve accuracy.

Number of layers: 243 | Parameter count: 2,294,784 | Trained size: 10 MB |

Training Set Information

Performance

Examples

Resource retrieval

Get the pre-trained net:

In[1]:=
NetModel["ShuffleNet-V2 Trained on ImageNet Competition Data"]
Out[1]=

Basic usage

Classify an image:

In[2]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/7dc3f77c-71f5-4ae1-98ec-42949f0fbf29"]
Out[2]=

The prediction is an Entity object, which can be queried:

In[3]:=
pred["Definition"]
Out[3]=

Get a list of available properties of the predicted Entity:

In[4]:=
pred["Properties"]
Out[4]=

Obtain the probabilities of the 10 most likely entities predicted by the net:

In[5]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/85b440b9-3053-4b64-aad7-a30583e0a850"]
Out[5]=

An object outside the list of the ImageNet classes will be misidentified:

In[6]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/934f2220-f6b9-415f-b4b1-f2f0517113bd"]
Out[6]=

Obtain the list of names of all available classes:

In[7]:=
EntityValue[
 NetExtract[
   NetModel["ShuffleNet-V2 Trained on ImageNet Competition Data"], "Output"][["Labels"]], "Name"]
Out[7]=

Requirements

Wolfram Language 12.3 (May 2021) or above

Resource History

Reference