Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples of the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
NDEigensystem
Related Categories
Mathematics
Physics
Schrödinger Equation for the Linear Harmonic Oscillator
Find the first few eigenvalues and eigenfunctions
Example Notebook
Open in Cloud
Download Notebook
T
h
e
S
c
h
r
ö
d
i
n
g
e
r
e
q
u
a
t
i
o
n
f
o
r
t
h
e
l
i
n
e
a
r
h
a
r
m
o
n
i
c
o
s
c
i
l
l
a
t
o
r
i
s
g
i
v
e
n
b
y
:
-
2
ℏ
2
m
ψ
"
(
x
)
+
k
2
2
x
ψ
(
x
)
=
ϵ
ψ
(
x
)
For simplicity scale the variables such that
ℏ
=
m
=
k
=
1
:
I
n
[
1
]
:
=
ℒ
=
-
1
2
ψ
'
'
[
x
]
+
1
2
2
x
ψ
[
x
]
;
Use the
N
D
E
i
g
e
n
s
y
s
t
e
m
algorithm to get the first five eigenvalues and eigenfunctions:
I
n
[
2
]
:
=
{
e
v
a
l
s
,
e
f
n
s
}
=
N
D
E
i
g
e
n
s
y
s
t
e
m
[
ℒ
,
ψ
[
x
]
,
{
x
,
-
5
,
5
}
,
5
]
;
List the eigenvalues:
I
n
[
3
]
:
=
e
v
a
l
s
O
u
t
[
3
]
=
{
0
.
5
0
0
0
7
9
,
1
.
5
0
0
5
4
,
2
.
5
0
1
9
,
3
.
5
0
4
7
,
4
.
5
0
9
4
1
}
T
h
e
e
x
a
c
t
v
a
l
u
e
s
a
r
e
ϵ
=
1
2
,
3
2
,
5
2
,
…
V
i
s
u
a
l
i
z
e
t
h
e
e
i
g
e
n
v
a
l
u
e
s
b
y
p
l
o
t
t
i
n
g
t
h
e
m
o
n
t
h
e
s
a
m
e
s
c
a
l
e
a
s
t
h
e
p
o
t
e
n
t
i
a
l
e
n
e
r
g
y
V
(
x
)
=
1
2
2
x
:
I
n
[
4
]
:
=
P
l
o
t
2
x
2
,
T
a
b
l
e
[
e
v
a
l
s
〚
n
〛
,
{
n
,
1
,
5
}
]
,
{
x
,
-
3
.
1
,
3
.
1
}
O
u
t
[
4
]
=
Plot the first four eigenfunctions:
I
n
[
5
]
:
=
T
a
b
l
e
[
P
l
o
t
[
E
v
a
l
u
a
t
e
[
-
e
f
n
s
〚
n
〛
]
,
{
x
,
-
3
,
3
}
,
G
r
i
d
L
i
n
e
s
A
u
t
o
m
a
t
i
c
]
,
{
n
,
1
,
4
}
]
O
u
t
[
5
]
=
,
,
,
W
e
c
a
n
s
o
l
v
e
t
h
e
S
c
h
r
ö
d
i
n
g
e
r
e
q
u
a
t
i
o
n
e
x
a
c
t
l
y
f
o
r
t
h
e
g
r
o
u
n
d
s
t
a
t
e
,
ϵ
=
1
2
,
s
u
b
j
e
c
t
t
o
t
h
e
c
o
n
d
i
t
i
o
n
t
h
a
t
ψ
(
x
)
0
a
s
x
±
∞
:
I
n
[
6
]
:
=
D
S
o
l
v
e
-
1
2
ψ
'
'
[
x
]
+
1
2
2
x
ψ
[
x
]
1
2
ψ
[
x
]
,
ψ
[
∞
]
0
,
ψ
[
-
∞
]
0
,
ψ
[
x
]
,
x
/
/
Q
u
i
e
t
O
u
t
[
6
]
=
ψ
[
x
]
-
2
x
2
1
F
o
r
t
h
e
f
i
r
s
t
e
x
c
i
t
e
d
s
t
a
t
e
,
w
i
t
h
ϵ
=
3
2
:
I
n
[
7
]
:
=
D
S
o
l
v
e
-
1
2
ψ
'
'
[
x
]
+
1
2
2
x
ψ
[
x
]
3
2
ψ
[
x
]
,
ψ
[
∞
]
0
,
ψ
[
-
∞
]
0
,
ψ
[
x
]
,
x
/
/
Q
u
i
e
t
O
u
t
[
7
]
=
ψ
[
x
]
1
P
a
r
a
b
o
l
i
c
C
y
l
i
n
d
e
r
D
1
,
2
x
To get a more elementary form:
I
n
[
8
]
:
=
S
e
r
i
e
s
P
a
r
a
b
o
l
i
c
C
y
l
i
n
d
e
r
D
1
,
2
x
,
{
x
,
∞
,
4
}
/
/
N
o
r
m
a
l
O
u
t
[
8
]
=
2
-
2
x
2
x
See Also
Prefactors for Nondimensionalized Formulas
Nondimensional Form of Black Hole Surface Gravity
Properties of the Planck Radiation Law
Rediscovering Kepler's Third Law
Related Symbols
NDEigensystem
Publisher Information
Contributed by:
S. M. Blinder