Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples for the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
WeatherData
TimeSeries
Entity
Quantity
UnitConvert
MissingDataMethod
DateListPlot
MovingMap
Related Categories
Data Science
Temperature Variability at a Given Location
Explore a time series of quantity-valued data
Example Notebook
Open in Cloud
Download Notebook
Use
W
e
a
t
h
e
r
D
a
t
a
to get the temperature data for the city of Seattle using quantity values and time series:
I
n
[
1
]
:
=
d
a
t
a
=
W
e
a
t
h
e
r
D
a
t
a
S
e
a
t
t
l
e
C
I
T
Y
,
"
T
e
m
p
e
r
a
t
u
r
e
"
,
{
{
2
0
2
1
,
6
,
2
5
}
,
{
2
0
2
1
,
7
,
1
}
}
O
u
t
[
1
]
=
T
i
m
e
S
e
r
i
e
s
T
i
m
e
:
2
5
J
u
n
2
0
2
1
G
M
T
-
5
t
o
0
1
J
u
l
2
0
2
1
G
M
T
-
5
D
a
t
a
p
o
i
n
t
s
:
1
6
1
Fill in missing data values in
T
i
m
e
S
e
r
i
e
s
using linear interpolation:
I
n
[
2
]
:
=
t
e
m
p
s
=
T
i
m
e
S
e
r
i
e
s
[
d
a
t
a
,
M
i
s
s
i
n
g
D
a
t
a
M
e
t
h
o
d
"
I
n
t
e
r
p
o
l
a
t
i
o
n
"
]
O
u
t
[
2
]
=
T
i
m
e
S
e
r
i
e
s
T
i
m
e
:
2
5
J
u
n
2
0
2
1
G
M
T
-
5
t
o
0
1
J
u
l
2
0
2
1
G
M
T
-
5
D
a
t
a
p
o
i
n
t
s
:
1
6
1
Visualize the temperature time series:
I
n
[
3
]
:
=
D
a
t
e
L
i
s
t
P
l
o
t
[
t
e
m
p
s
,
P
l
o
t
T
h
e
m
e
"
D
e
t
a
i
l
e
d
"
]
O
u
t
[
3
]
=
Look for basic properties:
I
n
[
4
]
:
=
s
t
a
t
s
=
{
M
i
n
,
M
a
x
,
M
e
a
n
,
M
e
d
i
a
n
,
S
t
a
n
d
a
r
d
D
e
v
i
a
t
i
o
n
}
;
T
a
b
l
e
F
o
r
m
[
{
M
a
p
[
#
[
t
e
m
p
s
]
&
,
s
t
a
t
s
]
}
,
T
a
b
l
e
H
e
a
d
i
n
g
s
{
N
o
n
e
,
s
t
a
t
s
}
]
O
u
t
[
4
]
/
/
T
a
b
l
e
F
o
r
m
=
M
i
n
M
a
x
M
e
a
n
M
e
d
i
a
n
S
t
a
n
d
a
r
d
D
e
v
i
a
t
i
o
n
1
6
.
7
°
C
3
9
.
4
°
C
2
5
.
7
2
2
4
°
C
2
5
.
6
°
C
6
.
2
4
3
8
4
°
C
Convert temperatures to degrees Fahrenheit:
I
n
[
5
]
:
=
t
e
m
p
s
F
=
U
n
i
t
C
o
n
v
e
r
t
[
t
e
m
p
s
,
"
D
e
g
r
e
e
s
F
a
h
r
e
n
h
e
i
t
"
]
;
T
a
b
l
e
F
o
r
m
[
{
M
a
p
[
#
[
t
e
m
p
s
F
]
&
,
s
t
a
t
s
]
}
,
T
a
b
l
e
H
e
a
d
i
n
g
s
{
N
o
n
e
,
s
t
a
t
s
}
]
O
u
t
[
5
]
/
/
T
a
b
l
e
F
o
r
m
=
M
i
n
M
a
x
M
e
a
n
M
e
d
i
a
n
S
t
a
n
d
a
r
d
D
e
v
i
a
t
i
o
n
6
2
.
0
6
°
F
1
0
2
.
9
2
°
F
7
8
.
3
0
0
2
°
F
7
8
.
0
8
°
F
1
1
.
2
3
8
9
°
F
Find the 6-hour moving average:
I
n
[
6
]
:
=
a
v
g
=
M
o
v
i
n
g
M
a
p
[
M
e
a
n
,
t
e
m
p
s
,
{
Q
u
a
n
t
i
t
y
[
6
,
"
H
o
u
r
s
"
]
,
C
e
n
t
e
r
}
]
O
u
t
[
6
]
=
T
i
m
e
S
e
r
i
e
s
T
i
m
e
:
2
5
J
u
n
2
0
2
1
G
M
T
-
5
t
o
0
1
J
u
l
2
0
2
1
G
M
T
-
5
D
a
t
a
p
o
i
n
t
s
:
1
5
5
Visualize the data together with the moving average:
I
n
[
7
]
:
=
D
a
t
e
L
i
s
t
P
l
o
t
{
t
e
m
p
s
,
a
v
g
}
,
O
u
t
[
7
]
=
t
e
m
p
e
r
a
t
u
r
e
s
6
-
h
o
u
r
m
o
v
i
n
g
a
v
e
r
a
g
e
Related Symbols
WeatherData
TimeSeries
Entity
Quantity
UnitConvert
MissingDataMethod
DateListPlot
MovingMap
Publisher Information
Contributed by:
Wolfram Staff