Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples of the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
Tuples
BinomialDistribution
Related Categories
Mathematics
Outcomes from Dice
Simulate dice tosses for various combinations of dice
Example Notebook
Open in Cloud
Download Notebook
Simple Cases
(
8
)
Here are possible values for a 6-sided die:
I
n
[
1
]
:
=
T
a
b
l
e
[
i
,
{
i
,
6
}
]
O
u
t
[
1
]
=
{
1
,
2
,
3
,
4
,
5
,
6
}
These are possible totals for 2 6-sided dice:
I
n
[
2
]
:
=
F
l
a
t
t
e
n
[
T
a
b
l
e
[
i
+
j
,
{
i
,
6
}
,
{
j
,
6
}
]
]
O
u
t
[
2
]
=
{
2
,
3
,
4
,
5
,
6
,
7
,
3
,
4
,
5
,
6
,
7
,
8
,
4
,
5
,
6
,
7
,
8
,
9
,
5
,
6
,
7
,
8
,
9
,
1
0
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
}
Here's a histogram of the total values:
I
n
[
3
]
:
=
H
i
s
t
o
g
r
a
m
[
%
,
{
1
}
]
O
u
t
[
3
]
=
Results for 3 dice:
I
n
[
4
]
:
=
F
l
a
t
t
e
n
[
T
a
b
l
e
[
i
+
j
+
k
,
{
i
,
6
}
,
{
j
,
6
}
,
{
k
,
6
}
]
]
O
u
t
[
4
]
=
{
3
,
4
,
5
,
6
,
7
,
8
,
4
,
5
,
6
,
7
,
8
,
9
,
5
,
6
,
7
,
8
,
9
,
1
0
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
4
,
5
,
6
,
7
,
8
,
9
,
5
,
6
,
7
,
8
,
9
,
1
0
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
5
,
6
,
7
,
8
,
9
,
1
0
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
}
Histogram of values for 3 dice:
I
n
[
5
]
:
=
H
i
s
t
o
g
r
a
m
[
%
,
{
1
}
]
O
u
t
[
5
]
=
Results for a pair of 12-sided (dodecahedral) dice:
I
n
[
6
]
:
=
F
l
a
t
t
e
n
[
T
a
b
l
e
[
i
+
j
,
{
i
,
1
2
}
,
{
j
,
1
2
}
]
]
O
u
t
[
6
]
=
{
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
4
,
5
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
5
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
7
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,
2
0
,
1
0
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,
2
0
,
2
1
,
1
1
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,
2
0
,
2
1
,
2
2
,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,
2
0
,
2
1
,
2
2
,
2
3
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,
2
0
,
2
1
,
2
2
,
2
3
,
2
4
}
Histogram of the results:
I
n
[
7
]
:
=
H
i
s
t
o
g
r
a
m
[
%
,
{
1
}
]
O
u
t
[
7
]
=
Histogram of values for 3 12-sided dice:
I
n
[
8
]
:
=
H
i
s
t
o
g
r
a
m
[
F
l
a
t
t
e
n
[
T
a
b
l
e
[
i
+
j
+
k
,
{
i
,
1
2
}
,
{
j
,
1
2
}
,
{
k
,
1
2
}
]
]
,
{
1
}
]
O
u
t
[
8
]
=
5
1
0
1
5
2
0
2
5
3
0
3
5
0
2
0
4
0
6
0
8
0
1
0
0
T
h
e
M
o
r
e
G
e
n
e
r
a
l
C
a
s
e
(
9
)
B
e
y
o
n
d
C
o
m
p
u
t
i
n
g
T
o
t
a
l
s
(
5
)
See Also
CoinTossSimulator
IdealCoinTossStatistics
Related Symbols
Tuples
BinomialDistribution
Publisher Information
Contributed by:
Stephen Wolfram