Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples for the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Chemistry
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Presentation & Publication
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Related Pages
Related Symbols
ImageContainsQ
HighlightImage
ImageBoundingBoxes
ImagePosition
VideoMapTimeSeries
VideoFrameList
VideoFrameMap
ImageAssemble
ImageAdd
TimeSeriesMap
Related Categories
Image Processing
Computer Vision
Video Processing
Object Recognition & Tracking in Videos
Example Notebook
Open in Cloud
Download Notebook
Detect and track an object in a video
Download the source
video
:
I
n
[
1
]
:
=
v
=
R
e
s
o
u
r
c
e
D
a
t
a
[
"
E
x
a
m
p
l
e
"
"
O
b
j
e
c
t
R
e
c
o
g
n
i
t
i
o
n
&
T
r
a
c
k
i
n
g
i
n
V
i
d
e
o
s
"
,
"
V
i
d
e
o
"
]
O
u
t
[
1
]
=
Use
I
m
a
g
e
C
o
n
t
a
i
n
s
Q
to find whether a dog is detected in each frame:
I
n
[
2
]
:
=
c
h
e
c
k
=
V
i
d
e
o
M
a
p
T
i
m
e
S
e
r
i
e
s
I
m
a
g
e
C
o
n
t
a
i
n
s
Q
#
I
m
a
g
e
,
d
o
m
e
s
t
i
c
d
o
g
C
O
N
C
E
P
T
&
,
v
;
Create a plot showing in which frames of the video a dog is detected:
I
n
[
3
]
:
=
L
i
s
t
P
l
o
t
T
i
m
e
S
e
r
i
e
s
M
a
p
[
B
o
o
l
e
,
c
h
e
c
k
]
,
o
p
t
i
o
n
s
O
u
t
[
3
]
=
Alternatively, extract the video frames and assemble a visual representation of the marked frames:
I
n
[
4
]
:
=
i
m
a
g
e
s
=
V
i
d
e
o
F
r
a
m
e
L
i
s
t
[
V
i
d
e
o
[
v
,
R
a
s
t
e
r
S
i
z
e
2
0
0
]
,
A
l
l
]
;
I
n
[
5
]
:
=
I
m
a
g
e
A
s
s
e
m
b
l
e
[
P
a
r
t
i
t
i
o
n
[
M
a
p
T
h
r
e
a
d
[
I
m
a
g
e
A
d
d
[
I
m
a
g
e
R
e
s
i
z
e
[
#
,
2
5
]
,
#
2
{
0
,
.
4
,
0
}
]
&
,
{
i
m
a
g
e
s
,
B
o
o
l
e
[
V
a
l
u
e
s
[
c
h
e
c
k
]
]
}
]
,
1
5
]
]
O
u
t
[
5
]
=
Using
I
m
a
g
e
P
o
s
i
t
i
o
n
, you can track the movement of the dog:
I
n
[
6
]
:
=
p
o
s
=
I
m
a
g
e
P
o
s
i
t
i
o
n
#
,
d
o
m
e
s
t
i
c
d
o
g
C
O
N
C
E
P
T
&
/
@
i
m
a
g
e
s
;
This is the trajectory detected in the video, over time:
I
n
[
7
]
:
=
H
i
g
h
l
i
g
h
t
I
m
a
g
e
V
i
d
e
o
E
x
t
r
a
c
t
F
r
a
m
e
s
V
i
d
e
o
v
,
.
.
.
,
,
L
i
n
e
[
F
l
a
t
t
e
n
[
p
o
s
,
1
]
]
O
u
t
[
7
]
=
Overlay the detected bounding box on the original video frame:
I
n
[
8
]
:
=
V
i
d
e
o
F
r
a
m
e
M
a
p
H
i
g
h
l
i
g
h
t
I
m
a
g
e
#
,
I
m
a
g
e
B
o
u
n
d
i
n
g
B
o
x
e
s
#
,
d
o
m
e
s
t
i
c
d
o
g
C
O
N
C
E
P
T
&
&
,
v
O
u
t
[
8
]
=
See Also
YOLO V3 Trained on Open Images Data
Scaled-YOLO V4 Trained on MS-COCO Data
Related Symbols
ImageContainsQ
HighlightImage
ImageBoundingBoxes
ImagePosition
VideoMapTimeSeries
VideoFrameList
VideoFrameMap
ImageAssemble
ImageAdd
TimeSeriesMap
Publisher Information
Contributed by:
Wolfram Staff