Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples of the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
FormulaData
NondimensionalizationTransform
UnitSystem
UnitConvert
Related Categories
Physics
Nondimensional Form of Black Hole Surface Gravity
Example Notebook
Open in Cloud
Download Notebook
Get the expression for the surface gravity of a charged black hole and the quantity variables present in it:
I
n
[
1
]
:
=
f
o
r
m
u
l
a
=
F
o
r
m
u
l
a
D
a
t
a
[
{
"
B
l
a
c
k
H
o
l
e
S
u
r
f
a
c
e
G
r
a
v
i
t
y
"
,
"
C
h
a
r
g
e
"
}
]
O
u
t
[
1
]
=
k
2
c
2
G
/
4
c
2
M
+
-
1
4
π
G
/
(
ε
0
4
c
)
2
Q
-
1
4
π
G
/
(
ε
0
4
c
)
2
Q
+
2
G
/
2
c
M
G
/
2
c
M
+
2
G
/
4
c
2
M
+
-
1
4
π
G
/
(
ε
0
4
c
)
2
Q
I
n
[
2
]
:
=
v
a
r
i
a
b
l
e
s
=
F
o
r
m
u
l
a
D
a
t
a
[
{
"
B
l
a
c
k
H
o
l
e
S
u
r
f
a
c
e
G
r
a
v
i
t
y
"
,
"
C
h
a
r
g
e
"
}
,
"
Q
u
a
n
t
i
t
y
V
a
r
i
a
b
l
e
s
"
]
O
u
t
[
2
]
=
{
k
,
M
,
Q
}
Replace the quantity variables representing surface gravity, mass and charge with their respective nondimensional variables:
I
n
[
3
]
:
=
N
o
n
d
i
m
e
n
s
i
o
n
a
l
i
z
a
t
i
o
n
T
r
a
n
s
f
o
r
m
[
f
o
r
m
u
l
a
,
v
a
r
i
a
b
l
e
s
,
{
κ
,
m
,
q
}
]
O
u
t
[
3
]
=
2
m
κ
+
2
m
κ
2
K
[
1
]
2
s
2
c
/
m
2
m
1
2
K
[
1
]
4
s
4
c
/
2
m
+
2
q
-
1
4
π
2
K
[
1
]
4
s
4
c
/
2
m
+
2
q
κ
-
1
4
π
K
[
1
]
2
s
2
c
/
m
2
m
1
2
K
[
1
]
4
s
4
c
/
2
m
+
2
q
-
1
4
π
2
K
[
1
]
4
s
4
c
/
2
m
1
Simplify the result further by specifying a natural unit system:
I
n
[
4
]
:
=
e
q
u
a
t
i
o
n
=
N
o
n
d
i
m
e
n
s
i
o
n
a
l
i
z
a
t
i
o
n
T
r
a
n
s
f
o
r
m
[
f
o
r
m
u
l
a
,
v
a
r
i
a
b
l
e
s
,
{
κ
,
m
,
q
}
,
U
n
i
t
S
y
s
t
e
m
"
D
e
S
i
t
t
e
r
U
n
i
t
s
"
]
O
u
t
[
4
]
=
2
m
κ
+
2
q
κ
-
1
/
Λ
2
q
-
1
/
Λ
+
2
m
1
/
Λ
+
2
m
κ
2
/
Λ
2
q
-
1
/
Λ
+
2
m
1
/
Λ
1
Get the transformation rules:
I
n
[
5
]
:
=
r
u
l
e
s
=
N
o
n
d
i
m
e
n
s
i
o
n
a
l
i
z
a
t
i
o
n
T
r
a
n
s
f
o
r
m
[
f
o
r
m
u
l
a
,
v
a
r
i
a
b
l
e
s
,
{
κ
,
m
,
q
}
,
"
N
o
n
d
i
m
e
n
s
i
o
n
a
l
i
z
a
t
i
o
n
R
u
l
e
s
"
,
U
n
i
t
S
y
s
t
e
m
"
D
e
S
i
t
t
e
r
U
n
i
t
s
"
]
O
u
t
[
5
]
=
k
κ
1
Λ
2
c
,
M
m
1
2
c
/
(
Λ
G
)
,
Q
q
2
π
ε
0
2
c
/
(
Λ
G
)
Compare the translation factor for mass to solar masses:
I
n
[
6
]
:
=
U
n
i
t
C
o
n
v
e
r
t
[
(
M
/
.
r
u
l
e
s
)
/
.
m
1
,
"
S
o
l
a
r
M
a
s
s
"
]
O
u
t
[
6
]
=
6
.
4
×
2
2
1
0
M
☉
See Also
Schrödinger Equation for the Linear Harmonic Oscillator
Prefactors for Nondimensionalized Formulas
Properties of the Planck Radiation Law
Rediscovering Kepler's Third Law
Related Symbols
FormulaData
NondimensionalizationTransform
UnitSystem
UnitConvert
Publisher Information
Contributed by:
Wolfram Staff