Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples for the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Chemistry
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Presentation & Publication
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Related Pages
Related Symbols
StarData
PlanetData
Related Categories
Astronomy
How Big are Exoplanets Compared to Stars?
Example Notebook
Open in Cloud
Download Notebook
Find 10 random known exoplanets:
I
n
[
1
]
:
=
R
a
n
d
o
m
E
n
t
i
t
y
[
"
E
x
o
p
l
a
n
e
t
"
,
1
0
]
O
u
t
[
1
]
=
K
e
p
l
e
r
6
0
3
b
,
H
D
7
3
5
2
6
c
,
K
e
p
l
e
r
9
7
c
,
K
e
p
l
e
r
1
4
1
2
b
,
H
D
1
4
9
0
2
6
b
,
H
D
1
0
0
5
4
6
b
,
K
e
p
l
e
r
5
8
b
,
K
2
-
2
1
b
,
K
2
-
8
4
b
,
H
D
1
0
2
2
7
2
b
Find their masses:
I
n
[
2
]
:
=
E
n
t
i
t
y
V
a
l
u
e
[
%
,
"
M
a
s
s
"
]
O
u
t
[
2
]
=
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
4
.
2
7
0
7
×
2
7
1
0
k
g
,
2
.
0
5
×
2
7
1
0
k
g
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
6
.
9
8
4
9
0
×
2
6
1
0
k
g
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
2
.
6
3
8
3
×
2
7
1
0
k
g
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
9
.
3
7
6
8
3
1
×
2
7
1
0
k
g
Find the masses of all known exoplanets:
I
n
[
3
]
:
=
e
x
o
d
a
t
a
=
D
e
l
e
t
e
M
i
s
s
i
n
g
[
E
n
t
i
t
y
V
a
l
u
e
[
"
E
x
o
p
l
a
n
e
t
"
,
"
M
a
s
s
"
]
]
;
Make histogram of the masses:
I
n
[
4
]
:
=
H
i
s
t
o
g
r
a
m
[
e
x
o
d
a
t
a
]
O
u
t
[
4
]
=
List the masses of the five largest known exoplanets:
I
n
[
5
]
:
=
T
a
k
e
L
a
r
g
e
s
t
[
e
x
o
d
a
t
a
,
5
]
O
u
t
[
5
]
=
6
.
3
9
6
7
4
5
×
2
8
1
0
k
g
,
5
.
6
9
4
4
×
2
8
1
0
k
g
,
5
.
4
0
9
4
8
×
2
8
1
0
k
g
,
5
.
3
1
5
×
2
8
1
0
k
g
,
5
.
1
6
8
4
3
×
2
8
1
0
k
g
Compare the largest to Jupiter:
I
n
[
6
]
:
=
M
a
x
[
e
x
o
d
a
t
a
]
J
u
p
i
t
e
r
P
L
A
N
E
T
m
a
s
s
O
u
t
[
6
]
=
3
3
.
7
0
Compare to the Sun:
I
n
[
7
]
:
=
M
a
x
[
e
x
o
d
a
t
a
]
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
7
]
=
0
.
0
3
2
1
6
9
7
5
Get 10 random stars:
I
n
[
8
]
:
=
R
a
n
d
o
m
E
n
t
i
t
y
[
"
S
t
a
r
"
,
1
0
]
O
u
t
[
8
]
=
H
I
P
6
5
6
7
,
H
D
1
2
7
6
0
0
,
K
e
p
l
e
r
6
6
7
,
H
D
6
2
1
8
8
,
H
D
2
7
0
4
4
,
H
D
1
1
1
0
4
2
,
G
l
6
6
1
B
,
H
D
1
9
8
9
9
0
,
H
D
3
4
3
1
9
2
,
H
D
2
2
3
1
4
6
Find the masses of 20 randomly chosen stars:
I
n
[
9
]
:
=
D
e
l
e
t
e
M
i
s
s
i
n
g
[
E
n
t
i
t
y
V
a
l
u
e
[
R
a
n
d
o
m
E
n
t
i
t
y
[
"
S
t
a
r
"
,
2
0
]
,
"
M
a
s
s
"
]
]
O
u
t
[
9
]
=
4
.
7
×
3
0
1
0
k
g
,
2
.
2
×
3
0
1
0
k
g
,
1
.
7
×
3
0
1
0
k
g
,
5
.
6
×
3
0
1
0
k
g
,
4
.
3
×
3
0
1
0
k
g
,
1
.
0
×
3
1
1
0
k
g
Find the ratio to the mass of the sun:
I
n
[
1
0
]
:
=
%
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
1
0
]
=
{
2
.
4
,
1
.
1
,
0
.
8
7
,
2
.
8
,
2
.
1
,
5
.
1
}
Find the mass distribution of all stars in the system (might take a while):
I
n
[
1
1
]
:
=
s
t
a
r
d
a
t
a
=
D
e
l
e
t
e
M
i
s
s
i
n
g
[
E
n
t
i
t
y
V
a
l
u
e
[
"
S
t
a
r
"
,
"
M
a
s
s
"
]
]
;
Make a histogram of the mass distribution:
I
n
[
1
2
]
:
=
H
i
s
t
o
g
r
a
m
[
s
t
a
r
d
a
t
a
]
O
u
t
[
1
2
]
=
Make a logarithmic histogram:
I
n
[
1
3
]
:
=
H
i
s
t
o
g
r
a
m
[
s
t
a
r
d
a
t
a
,
A
u
t
o
m
a
t
i
c
,
{
"
L
o
g
"
,
"
P
r
o
b
a
b
i
l
i
t
y
"
}
]
O
u
t
[
1
3
]
=
(Note that small stars may well be absent for reasons of detection rather than existence.)
Find the maximum mass in the data:
I
n
[
1
4
]
:
=
M
a
x
[
s
t
a
r
d
a
t
a
]
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
1
4
]
=
2
.
5
×
2
1
0
Find the minimum mass:
I
n
[
1
5
]
:
=
M
i
n
[
s
t
a
r
d
a
t
a
]
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
1
5
]
=
0
.
×
-
2
1
0
I
n
[
1
6
]
:
=
T
a
k
e
S
m
a
l
l
e
s
t
[
s
t
a
r
d
a
t
a
,
5
]
O
u
t
[
1
6
]
=
2
.
×
2
8
1
0
k
g
,
4
.
×
2
8
1
0
k
g
,
4
.
×
2
8
1
0
k
g
,
4
.
×
2
8
1
0
k
g
,
4
.
×
2
8
1
0
k
g
I
n
[
1
7
]
:
=
%
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
1
7
]
=
{
0
.
×
-
2
1
0
,
0
.
0
2
,
0
.
0
2
,
0
.
0
2
,
0
.
0
2
}
Compare smallest star to the largest exoplanet:
I
n
[
1
8
]
:
=
M
i
n
[
s
t
a
r
d
a
t
a
]
/
M
a
x
[
e
x
o
d
a
t
a
]
O
u
t
[
1
8
]
=
0
.
3
The largest exoplanet is larger than the smallest star.
See Also
StellarSpectralClassData
Related Symbols
StarData
PlanetData
Publisher Information
Contributed by:
Stephen Wolfram