Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples of the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
LowpassFilter
BandpassFilter
HighpassFilter
LeastSquaresFilterKernel
Related Categories
Image Processing
Signal Processing
Filter a Noisy Signal
Example Notebook
Open in Cloud
Download Notebook
Use lowpass filtering to remove noise from a signal
Start with a noisy signal:
I
n
[
1
]
:
=
d
a
t
a
=
T
a
b
l
e
[
S
i
n
[
i
^
2
+
i
]
+
R
a
n
d
o
m
R
e
a
l
[
{
-
.
2
,
.
3
}
]
,
{
i
,
0
,
P
i
,
0
.
0
0
3
}
]
;
Use
L
o
w
p
a
s
s
F
i
l
t
e
r
to diminish high-frequency content and remove the noise:
I
n
[
2
]
:
=
M
a
n
i
p
u
l
a
t
e
[
G
r
a
p
h
i
c
s
C
o
l
u
m
n
[
L
i
s
t
L
i
n
e
P
l
o
t
/
@
{
d
a
t
a
,
L
o
w
p
a
s
s
F
i
l
t
e
r
[
d
a
t
a
,
ω
,
3
1
]
}
]
,
{
{
ω
,
.
5
}
,
.
1
,
P
i
}
]
O
u
t
[
2
]
=
Apply the same
L
o
w
p
a
s
s
F
i
l
t
e
r
to remove the noise in an image:
I
n
[
3
]
:
=
L
o
w
p
a
s
s
F
i
l
t
e
r
,
.
5
,
3
1
/
/
I
m
a
g
e
A
d
j
u
s
t
O
u
t
[
3
]
=
Related Symbols
LowpassFilter
BandpassFilter
HighpassFilter
LeastSquaresFilterKernel
Publisher Information
Contributed by:
Wolfram Staff