Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples of the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
GeomagneticModelData
GeoGraphics
GeoBoundsRegion
GeoPosition
CoordinateBounds
QuantityArray
Lookup
Related Categories
Geography
Data Science
Extrema Values of the Earth's Magnetic Field in a Region
Example Notebook
Open in Cloud
Download Notebook
Define a region near the North Pole from its latitudes and longitudes:
I
n
[
1
]
:
=
l
a
t
=
{
6
5
,
8
5
}
;
l
o
n
=
{
-
3
0
,
3
0
}
;
Plot this region on a world map:
I
n
[
2
]
:
=
p
l
o
t
=
G
e
o
G
r
a
p
h
i
c
s
G
e
o
B
o
u
n
d
s
R
e
g
i
o
n
[
{
l
a
t
,
l
o
n
}
]
,
O
u
t
[
2
]
=
Get data about the Earth's magnetic field in this region:
I
n
[
3
]
:
=
d
a
t
a
=
G
e
o
m
a
g
n
e
t
i
c
M
o
d
e
l
D
a
t
a
T
r
a
n
s
p
o
s
e
[
{
l
a
t
,
l
o
n
}
]
,
.
.
.
O
u
t
[
3
]
=
Extract the components of the Earth's magnetic field:
I
n
[
4
]
:
=
c
o
m
p
o
n
e
n
t
s
=
{
"
N
o
r
t
h
C
o
m
p
o
n
e
n
t
"
,
"
E
a
s
t
C
o
m
p
o
n
e
n
t
"
,
"
D
o
w
n
C
o
m
p
o
n
e
n
t
"
}
;
a
r
r
=
L
o
o
k
u
p
[
d
a
t
a
,
c
o
m
p
o
n
e
n
t
s
]
O
u
t
[
4
]
=
Q
u
a
n
t
i
t
y
A
r
r
a
y
D
i
m
e
n
s
i
o
n
s
:
{
4
0
,
9
4
}
U
n
i
t
:
N
a
n
o
t
e
s
l
a
s
,
Q
u
a
n
t
i
t
y
A
r
r
a
y
D
i
m
e
n
s
i
o
n
s
:
{
4
0
,
9
4
}
U
n
i
t
:
N
a
n
o
t
e
s
l
a
s
,
Q
u
a
n
t
i
t
y
A
r
r
a
y
D
i
m
e
n
s
i
o
n
s
:
{
4
0
,
9
4
}
U
n
i
t
:
N
a
n
o
t
e
s
l
a
s
Convert the list of arrays into an array of 3-vectors:
I
n
[
5
]
:
=
q
a
=
T
r
a
n
s
p
o
s
e
[
Q
u
a
n
t
i
t
y
A
r
r
a
y
[
a
r
r
]
,
{
3
,
1
,
2
}
]
O
u
t
[
5
]
=
Q
u
a
n
t
i
t
y
A
r
r
a
y
D
i
m
e
n
s
i
o
n
s
:
{
4
0
,
9
4
,
3
}
U
n
i
t
:
N
a
n
o
t
e
s
l
a
s
Use
C
o
o
r
d
i
n
a
t
e
B
o
u
n
d
s
to obtain the ranges of the components of the Earth's magnetic field in the specified region:
I
n
[
6
]
:
=
T
h
r
e
a
d
[
c
o
m
p
o
n
e
n
t
s
C
o
o
r
d
i
n
a
t
e
B
o
u
n
d
s
[
q
a
]
]
/
/
T
a
b
l
e
F
o
r
m
O
u
t
[
6
]
/
/
T
a
b
l
e
F
o
r
m
=
N
o
r
t
h
C
o
m
p
o
n
e
n
t
{
1
8
2
3
.
4
7
n
T
,
1
4
7
2
0
.
3
n
T
}
E
a
s
t
C
o
m
p
o
n
e
n
t
{
-
3
9
6
3
.
8
8
n
T
,
3
2
6
6
.
1
4
n
T
}
D
o
w
n
C
o
m
p
o
n
e
n
t
{
4
9
2
6
4
.
4
n
T
,
5
6
7
9
8
.
8
n
T
}
Related Symbols
GeomagneticModelData
GeoGraphics
GeoBoundsRegion
GeoPosition
CoordinateBounds
QuantityArray
Lookup
Publisher Information
Contributed by:
Wolfram Staff