Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples for the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
FormulaLookup
FormulaData
Quantity
Related Categories
Physics
Compare Relativistic and Nonrelativistic Doppler Shift Formulas
Example Notebook
Open in Cloud
Download Notebook
Find the full names of formulas for the Doppler shift in frequency:
I
n
[
1
]
:
=
F
o
r
m
u
l
a
L
o
o
k
u
p
[
"
d
o
p
p
l
e
r
s
h
i
f
t
f
r
e
q
u
e
n
c
y
"
]
/
/
T
a
b
l
e
F
o
r
m
O
u
t
[
1
]
/
/
T
a
b
l
e
F
o
r
m
=
D
o
p
p
l
e
r
S
h
i
f
t
F
r
e
q
u
e
n
c
y
D
o
p
p
l
e
r
S
h
i
f
t
F
r
e
q
u
e
n
c
y
O
b
s
e
r
v
e
r
S
p
e
e
d
D
o
p
p
l
e
r
S
h
i
f
t
F
r
e
q
u
e
n
c
y
W
i
n
d
S
p
e
e
d
D
o
p
p
l
e
r
S
h
i
f
t
F
r
e
q
u
e
n
c
y
O
b
s
e
r
v
e
r
S
p
e
e
d
W
i
n
d
S
p
e
e
d
D
o
p
p
l
e
r
S
h
i
f
t
R
e
l
a
t
i
v
i
s
t
i
c
F
r
e
q
u
e
n
c
y
D
o
p
p
l
e
r
S
h
i
f
t
R
e
l
a
t
i
v
i
s
t
i
c
F
r
e
q
u
e
n
c
y
O
b
s
e
r
v
e
r
S
p
e
e
d
Get a specific equation:
I
n
[
2
]
:
=
F
o
r
m
u
l
a
D
a
t
a
[
{
"
D
o
p
p
l
e
r
S
h
i
f
t
"
,
"
F
r
e
q
u
e
n
c
y
"
}
]
O
u
t
[
2
]
=
f
o
f
s
c
c
+
v
s
I
n
[
3
]
:
=
F
o
r
m
u
l
a
D
a
t
a
[
{
"
D
o
p
p
l
e
r
S
h
i
f
t
R
e
l
a
t
i
v
i
s
t
i
c
"
,
"
F
r
e
q
u
e
n
c
y
"
}
]
O
u
t
[
3
]
=
f
o
f
s
c
-
v
s
c
+
v
s
Define functions that solve for specific quantity variables:
I
n
[
4
]
:
=
d
o
p
p
l
e
r
[
v
_
]
:
=
L
a
s
t
@
F
o
r
m
u
l
a
D
a
t
a
[
{
"
D
o
p
p
l
e
r
S
h
i
f
t
"
,
"
F
r
e
q
u
e
n
c
y
"
}
,
{
f
s
Q
u
a
n
t
i
t
y
[
4
0
0
,
"
M
e
g
a
h
e
r
t
z
"
]
,
v
s
v
,
"
c
"
Q
u
a
n
t
i
t
y
[
1
,
"
S
p
e
e
d
O
f
L
i
g
h
t
"
]
}
]
I
n
[
5
]
:
=
d
o
p
p
l
e
r
r
e
l
a
t
i
v
i
s
t
i
c
[
v
_
]
:
=
L
a
s
t
@
F
o
r
m
u
l
a
D
a
t
a
[
{
"
D
o
p
p
l
e
r
S
h
i
f
t
R
e
l
a
t
i
v
i
s
t
i
c
"
,
"
F
r
e
q
u
e
n
c
y
"
}
,
{
f
s
Q
u
a
n
t
i
t
y
[
4
0
0
,
"
M
e
g
a
h
e
r
t
z
"
]
,
v
s
v
}
]
Compare relativistic and nonrelativistic formulas in a plot:
I
n
[
6
]
:
=
P
l
o
t
{
d
o
p
p
l
e
r
[
Q
u
a
n
t
i
t
y
[
v
,
"
S
p
e
e
d
O
f
L
i
g
h
t
"
]
]
,
d
o
p
p
l
e
r
r
e
l
a
t
i
v
i
s
t
i
c
[
Q
u
a
n
t
i
t
y
[
v
,
"
S
p
e
e
d
O
f
L
i
g
h
t
"
]
]
}
,
{
v
,
0
,
0
.
9
}
,
O
u
t
[
6
]
=
r
e
l
a
t
i
v
i
s
t
i
c
n
o
n
r
e
l
a
t
i
v
i
s
t
i
c
Use
S
e
r
i
e
s
to compare the two formulas symbolically for low speeds to expose how they differ in the factor of the (v/c)^2 term:
I
n
[
7
]
:
=
S
e
r
i
e
s
c
-
v
s
c
+
v
s
,
{
v
s
,
0
,
2
}
O
u
t
[
7
]
=
1
+
-
1
/
c
v
s
+
1
2
/
2
c
2
v
s
+
3
O
[
v
s
]
I
n
[
8
]
:
=
S
e
r
i
e
s
c
c
+
v
s
,
{
v
s
,
0
,
2
}
O
u
t
[
8
]
=
1
-
v
s
c
+
2
v
s
2
c
+
3
O
[
v
s
]
Related Symbols
FormulaLookup
FormulaData
Quantity
Publisher Information
Contributed by:
Wolfram Staff