Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples of the Wolfram Language
Primary Navigation
Search
Browse
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Alphabetical List
More…
Submit a New Resource
Learn More about
Wolfram Language
Sign In
Related Pages
Related Categories
Computer Science
Mathematics
Physics
Quantum Computation
Compute the Expectation Value of a Quantum Operator
Example Notebook
Open in Cloud
Download Notebook
The expectation value of an operator with respect to a quantum state can be computed in different ways.
Install the QuantumFramework paclet:
I
n
[
1
]
:
=
P
a
c
l
e
t
I
n
s
t
a
l
l
[
"
W
o
l
f
r
a
m
/
Q
u
a
n
t
u
m
F
r
a
m
e
w
o
r
k
"
]
;
Load the paclet:
I
n
[
2
]
:
=
N
e
e
d
s
[
"
W
o
l
f
r
a
m
`
Q
u
a
n
t
u
m
F
r
a
m
e
w
o
r
k
`
"
]
;
Create a many-body random mixed state:
I
n
[
3
]
:
=
q
s
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
R
a
n
d
o
m
M
i
x
e
d
"
[
3
]
,
"
L
a
b
e
l
"
"
ρ
"
]
O
u
t
[
3
]
=
Q
u
a
n
t
u
m
S
t
a
t
e
M
i
x
e
d
s
t
a
t
e
Q
u
d
i
t
s
:
3
T
y
p
e
:
M
a
t
r
i
x
D
i
m
e
n
s
i
o
n
:
8
Create a random many-body Hermitian operator:
I
n
[
4
]
:
=
o
p
=
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
[
"
R
a
n
d
o
m
H
e
r
m
i
t
i
a
n
"
,
R
a
n
g
e
[
3
]
,
"
L
a
b
e
l
"
"
R
a
n
d
o
m
H
e
r
m
i
t
i
a
n
"
]
O
u
t
[
4
]
=
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
P
i
c
t
u
r
e
:
S
c
h
r
o
d
i
n
g
e
r
A
r
i
t
y
:
3
D
i
m
e
n
s
i
o
n
:
8
→
8
Q
u
d
i
t
s
:
3
→
3
Calculate
〈
A
〉
=
T
r
[
A
.
ρ
]
, which is the expectation value of the operator
A
, given the density matrix
ρ
:
I
n
[
5
]
:
=
T
r
[
o
p
[
"
M
a
t
r
i
x
"
]
.
q
s
[
"
D
e
n
s
i
t
y
M
a
t
r
i
x
"
]
]
/
/
C
h
o
p
O
u
t
[
5
]
=
0
.
1
0
6
4
1
7
One can feed the density matrix into a circuit to find the expectation value:
I
n
[
6
]
:
=
q
c
=
Q
u
a
n
t
u
m
C
i
r
c
u
i
t
O
p
e
r
a
t
o
r
[
{
q
s
[
"
B
e
n
d
"
]
,
o
p
,
S
e
q
u
e
n
c
e
@
@
T
a
b
l
e
[
"
C
a
p
"
{
i
,
i
+
3
}
,
{
i
,
3
}
]
}
]
;
q
c
[
"
D
i
a
g
r
a
m
"
]
O
u
t
[
6
]
=
Evaluate the circuit and get the scalar result:
I
n
[
7
]
:
=
q
c
[
]
[
"
S
c
a
l
a
r
"
]
/
/
C
h
o
p
O
u
t
[
7
]
=
0
.
1
0
6
4
1
7
Transform the density matrix into an operator, then do partial tracing:
I
n
[
8
]
:
=
Q
u
a
n
t
u
m
P
a
r
t
i
a
l
T
r
a
c
e
[
o
p
[
q
s
[
"
O
p
e
r
a
t
o
r
"
]
]
]
[
"
S
c
a
l
a
r
"
]
/
/
C
h
o
p
O
u
t
[
8
]
=
0
.
1
0
6
4
1
7
Measure the operator, given the state, and find the mean value:
I
n
[
9
]
:
=
Q
u
a
n
t
u
m
M
e
a
s
u
r
e
m
e
n
t
O
p
e
r
a
t
o
r
[
o
p
]
[
q
s
]
[
"
M
e
a
n
"
]
/
/
C
h
o
p
O
u
t
[
9
]
=
0
.
1
0
6
4
1
7
See Also
Wolfram/QuantumFramework
Publisher Information
Contributed by:
Wolfram Research, Quantum Computation Framework Team