Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples of the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Categories
Computer Science
Mathematics
Physics
Quantum Computation
Basis Transformation of Quantum States
Example Notebook
Open in Cloud
Download Notebook
Install and load the QuantumFramework paclet:
I
n
[
1
]
:
=
P
a
c
l
e
t
I
n
s
t
a
l
l
[
"
W
o
l
f
r
a
m
/
Q
u
a
n
t
u
m
F
r
a
m
e
w
o
r
k
"
]
N
e
e
d
s
[
"
W
o
l
f
r
a
m
`
Q
u
a
n
t
u
m
F
r
a
m
e
w
o
r
k
`
"
]
Define a 2D quantum state in the computational basis:
I
n
[
2
]
:
=
ψ
1
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
{
1
,
}
]
O
u
t
[
2
]
=
Q
u
a
n
t
u
m
S
t
a
t
e
P
u
r
e
s
t
a
t
e
Q
u
d
i
t
s
:
1
T
y
p
e
:
V
e
c
t
o
r
D
i
m
e
n
s
i
o
n
:
2
P
i
c
t
u
r
e
:
S
c
h
r
ö
d
i
n
g
e
r
Transform it into the Pauli-X basis and show the formula:
I
n
[
3
]
:
=
ψ
2
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
ψ
1
,
"
X
"
]
;
ψ
2
[
"
F
o
r
m
u
l
a
"
]
O
u
t
[
3
]
=
-
(
1
-
)
ψ
x
-
2
+
(
1
+
)
ψ
x
+
2
I
n
[
4
]
:
=
ψ
1
[
"
F
o
r
m
u
l
a
"
]
O
u
t
[
4
]
=
|
0
〉
+
|
1
〉
Test that the states are still the same:
I
n
[
5
]
:
=
ψ
1
ψ
2
O
u
t
[
5
]
=
T
r
u
e
Transform the state into the Fourier basis and show the formula:
I
n
[
6
]
:
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
ψ
1
,
"
F
o
u
r
i
e
r
"
]
[
"
F
o
r
m
u
l
a
"
]
O
u
t
[
6
]
=
Let's look at another example, with a more complicated quantum basis.
Define a random state in the Schwinger basis:
I
n
[
7
]
:
=
ψ
3
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
R
a
n
d
o
m
P
u
r
e
"
,
Q
u
a
n
t
u
m
B
a
s
i
s
[
"
S
c
h
w
i
n
g
e
r
"
]
]
O
u
t
[
7
]
=
Q
u
a
n
t
u
m
S
t
a
t
e
P
u
r
e
s
t
a
t
e
Q
u
d
i
t
s
:
1
T
y
p
e
:
V
e
c
t
o
r
D
i
m
e
n
s
i
o
n
:
4
P
i
c
t
u
r
e
:
S
c
h
r
ö
d
i
n
g
e
r
Show the formula:
I
n
[
8
]
:
=
ψ
3
[
"
F
o
r
m
u
l
a
"
]
O
u
t
[
8
]
=
(
-
0
.
1
6
1
6
7
1
+
0
.
3
8
6
2
2
8
)
|
S
0
0
〉
-
(
0
.
0
4
7
5
4
9
5
+
0
.
0
6
1
2
5
7
9
)
|
S
0
1
〉
-
(
0
.
0
6
4
2
4
5
7
-
0
.
2
9
5
5
5
9
)
|
S
1
0
〉
+
(
0
.
3
7
4
5
5
3
+
0
.
2
9
4
7
9
4
)
|
S
1
1
〉
Transform the state into a new basis:
I
n
[
9
]
:
=
ψ
4
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
ψ
3
,
{
2
,
2
}
]
O
u
t
[
9
]
=
Q
u
a
n
t
u
m
S
t
a
t
e
P
u
r
e
s
t
a
t
e
Q
u
d
i
t
s
:
2
T
y
p
e
:
V
e
c
t
o
r
D
i
m
e
n
s
i
o
n
:
4
P
i
c
t
u
r
e
:
S
c
h
r
ö
d
i
n
g
e
r
Show the formula of the transformed basis:
I
n
[
1
0
]
:
=
ψ
4
[
"
F
o
r
m
u
l
a
"
]
O
u
t
[
1
0
]
=
(
-
0
.
2
0
9
2
2
1
+
0
.
3
2
4
9
7
)
|
0
0
〉
-
(
0
.
4
3
8
7
9
9
-
0
.
0
0
0
7
6
5
0
1
4
)
|
0
1
〉
+
(
0
.
3
1
0
3
0
7
+
0
.
5
9
0
3
5
4
)
|
1
0
〉
-
(
0
.
1
1
4
1
2
2
-
0
.
4
4
7
4
8
6
)
|
1
1
〉
Test that the states are still the same:
I
n
[
1
1
]
:
=
ψ
3
ψ
4
O
u
t
[
1
1
]
=
T
r
u
e
See Also
Wolfram/QuantumFramework
Publisher Information
Contributed by:
Wolfram Research, Quantum Computation Framework Team