Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples for the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
StarData
PlanetData
Related Categories
Astronomy
How Big are Exoplanets Compared to Stars?
Example Notebook
Open in Cloud
Download Notebook
Find 10 random known exoplanets:
I
n
[
1
]
:
=
R
a
n
d
o
m
E
n
t
i
t
y
[
"
E
x
o
p
l
a
n
e
t
"
,
1
0
]
O
u
t
[
1
]
=
K
e
p
l
e
r
6
0
3
b
,
H
D
7
3
5
2
6
c
,
K
e
p
l
e
r
9
7
c
,
K
e
p
l
e
r
1
4
1
2
b
,
H
D
1
4
9
0
2
6
b
,
H
D
1
0
0
5
4
6
b
,
K
e
p
l
e
r
5
8
b
,
K
2
-
2
1
b
,
K
2
-
8
4
b
,
H
D
1
0
2
2
7
2
b
Find their masses:
I
n
[
2
]
:
=
E
n
t
i
t
y
V
a
l
u
e
[
%
,
"
M
a
s
s
"
]
O
u
t
[
2
]
=
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
4
.
2
7
0
7
×
2
7
1
0
k
g
,
2
.
0
5
×
2
7
1
0
k
g
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
6
.
9
8
4
9
0
×
2
6
1
0
k
g
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
2
.
6
3
8
3
×
2
7
1
0
k
g
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
9
.
3
7
6
8
3
1
×
2
7
1
0
k
g
Find the masses of all known exoplanets:
I
n
[
3
]
:
=
e
x
o
d
a
t
a
=
D
e
l
e
t
e
M
i
s
s
i
n
g
[
E
n
t
i
t
y
V
a
l
u
e
[
"
E
x
o
p
l
a
n
e
t
"
,
"
M
a
s
s
"
]
]
;
Make histogram of the masses:
I
n
[
4
]
:
=
H
i
s
t
o
g
r
a
m
[
e
x
o
d
a
t
a
]
O
u
t
[
4
]
=
List the masses of the five largest known exoplanets:
I
n
[
5
]
:
=
T
a
k
e
L
a
r
g
e
s
t
[
e
x
o
d
a
t
a
,
5
]
O
u
t
[
5
]
=
6
.
3
9
6
7
4
5
×
2
8
1
0
k
g
,
5
.
6
9
4
4
×
2
8
1
0
k
g
,
5
.
4
0
9
4
8
×
2
8
1
0
k
g
,
5
.
3
1
5
×
2
8
1
0
k
g
,
5
.
1
6
8
4
3
×
2
8
1
0
k
g
Compare the largest to Jupiter:
I
n
[
6
]
:
=
M
a
x
[
e
x
o
d
a
t
a
]
J
u
p
i
t
e
r
P
L
A
N
E
T
m
a
s
s
O
u
t
[
6
]
=
3
3
.
7
0
Compare to the Sun:
I
n
[
7
]
:
=
M
a
x
[
e
x
o
d
a
t
a
]
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
7
]
=
0
.
0
3
2
1
6
9
7
5
Get 10 random stars:
I
n
[
8
]
:
=
R
a
n
d
o
m
E
n
t
i
t
y
[
"
S
t
a
r
"
,
1
0
]
O
u
t
[
8
]
=
H
I
P
6
5
6
7
,
H
D
1
2
7
6
0
0
,
K
e
p
l
e
r
6
6
7
,
H
D
6
2
1
8
8
,
H
D
2
7
0
4
4
,
H
D
1
1
1
0
4
2
,
G
l
6
6
1
B
,
H
D
1
9
8
9
9
0
,
H
D
3
4
3
1
9
2
,
H
D
2
2
3
1
4
6
Find the masses of 20 randomly chosen stars:
I
n
[
9
]
:
=
D
e
l
e
t
e
M
i
s
s
i
n
g
[
E
n
t
i
t
y
V
a
l
u
e
[
R
a
n
d
o
m
E
n
t
i
t
y
[
"
S
t
a
r
"
,
2
0
]
,
"
M
a
s
s
"
]
]
O
u
t
[
9
]
=
4
.
7
×
3
0
1
0
k
g
,
2
.
2
×
3
0
1
0
k
g
,
1
.
7
×
3
0
1
0
k
g
,
5
.
6
×
3
0
1
0
k
g
,
4
.
3
×
3
0
1
0
k
g
,
1
.
0
×
3
1
1
0
k
g
Find the ratio to the mass of the sun:
I
n
[
1
0
]
:
=
%
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
1
0
]
=
{
2
.
4
,
1
.
1
,
0
.
8
7
,
2
.
8
,
2
.
1
,
5
.
1
}
Find the mass distribution of all stars in the system (might take a while):
I
n
[
1
1
]
:
=
s
t
a
r
d
a
t
a
=
D
e
l
e
t
e
M
i
s
s
i
n
g
[
E
n
t
i
t
y
V
a
l
u
e
[
"
S
t
a
r
"
,
"
M
a
s
s
"
]
]
;
Make a histogram of the mass distribution:
I
n
[
1
2
]
:
=
H
i
s
t
o
g
r
a
m
[
s
t
a
r
d
a
t
a
]
O
u
t
[
1
2
]
=
Make a logarithmic histogram:
I
n
[
1
3
]
:
=
H
i
s
t
o
g
r
a
m
[
s
t
a
r
d
a
t
a
,
A
u
t
o
m
a
t
i
c
,
{
"
L
o
g
"
,
"
P
r
o
b
a
b
i
l
i
t
y
"
}
]
O
u
t
[
1
3
]
=
(Note that small stars may well be absent for reasons of detection rather than existence.)
Find the maximum mass in the data:
I
n
[
1
4
]
:
=
M
a
x
[
s
t
a
r
d
a
t
a
]
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
1
4
]
=
2
.
5
×
2
1
0
Find the minimum mass:
I
n
[
1
5
]
:
=
M
i
n
[
s
t
a
r
d
a
t
a
]
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
1
5
]
=
0
.
×
-
2
1
0
I
n
[
1
6
]
:
=
T
a
k
e
S
m
a
l
l
e
s
t
[
s
t
a
r
d
a
t
a
,
5
]
O
u
t
[
1
6
]
=
2
.
×
2
8
1
0
k
g
,
4
.
×
2
8
1
0
k
g
,
4
.
×
2
8
1
0
k
g
,
4
.
×
2
8
1
0
k
g
,
4
.
×
2
8
1
0
k
g
I
n
[
1
7
]
:
=
%
S
u
n
S
T
A
R
m
a
s
s
O
u
t
[
1
7
]
=
{
0
.
×
-
2
1
0
,
0
.
0
2
,
0
.
0
2
,
0
.
0
2
,
0
.
0
2
}
Compare smallest star to the largest exoplanet:
I
n
[
1
8
]
:
=
M
i
n
[
s
t
a
r
d
a
t
a
]
/
M
a
x
[
e
x
o
d
a
t
a
]
O
u
t
[
1
8
]
=
0
.
3
The largest exoplanet is larger than the smallest star.
See Also
StellarSpectralClassData
Related Symbols
StarData
PlanetData
Publisher Information
Contributed by:
Stephen Wolfram