Wolfram.com
WolframAlpha.com
WolframCloud.com
Wolfram Language
Example Repository
Ready-to-use examples of the Wolfram Language
Primary Navigation
Categories
Astronomy
Audio Processing
Calculus
Cellular Automata
Chemistry
Complex Systems
Computer Science
Computer Vision
Control Systems
Creative Arts
Data Science
Engineering
Finance & Economics
Finite Element Method
Food & Nutrition
Geography
Geometry
Graphs & Networks
Image Processing
Life Sciences
Machine Learning
Mathematics
Optimization
Physics
Puzzles and Recreation
Quantum Computation
Signal Processing
Social Sciences
System Modeling
Text & Language Processing
Time-Related Computation
Video Processing
Visualization & Graphics
Alphabetical List
Submit a New Resource
Learn More about
Wolfram Language
Related Pages
Related Symbols
PlanetData
FindFormula
Related Categories
Astronomy
Physics
Rediscovering Kepler's Third Law
Example Notebook
Open in Cloud
Download Notebook
Find the orbit period and semimajor axis for all the planets in our Solar System:
I
n
[
1
]
:
=
E
n
t
i
t
y
V
a
l
u
e
p
l
a
n
e
t
s
P
L
A
N
E
T
S
,
{
"
O
r
b
i
t
P
e
r
i
o
d
"
,
"
S
e
m
i
m
a
j
o
r
A
x
i
s
"
}
O
u
t
[
1
]
=
8
7
.
9
6
9
2
6
d
a
y
s
,
0
.
3
8
7
0
9
8
9
3
a
u
,
2
2
4
.
7
0
0
8
0
d
a
y
s
,
0
.
7
2
3
3
3
1
9
9
a
u
,
3
6
5
.
2
5
6
3
6
d
a
y
s
,
1
.
0
0
0
0
0
0
1
1
a
u
,
{
1
.
8
8
0
8
4
7
6
a
,
1
.
5
2
3
6
6
2
3
1
a
u
}
,
{
1
1
.
8
6
2
6
1
5
a
,
5
.
2
0
3
3
6
3
0
1
a
u
}
,
{
2
9
.
4
4
7
4
9
8
a
,
9
.
5
3
7
0
7
0
3
2
a
u
}
,
{
8
4
.
0
1
6
8
4
6
a
,
1
9
.
1
9
1
2
6
3
9
3
a
u
}
,
{
1
6
4
.
7
9
1
3
2
a
,
3
0
.
0
6
8
9
6
3
4
8
a
u
}
Make a log-log plot:
I
n
[
2
]
:
=
L
i
s
t
L
o
g
L
o
g
P
l
o
t
[
%
]
O
u
t
[
2
]
=
The fact that it's close to a straight line implies a power law relationship.
Find a formula for the semimajor axis as a function of the period:
I
n
[
3
]
:
=
F
i
n
d
F
o
r
m
u
l
a
[
%
%
,
p
]
O
u
t
[
3
]
=
0
.
0
1
3
5
5
4
4
0
.
7
Q
u
a
n
t
i
t
y
M
a
g
n
i
t
u
d
e
[
p
,
D
a
y
s
]
a
u
There's an exponent of 0.7, close to the 2/3 of Kepler's third law.
Exoplanets
(
5
)
Pick 10 random exoplanets:
I
n
[
1
]
:
=
R
a
n
d
o
m
E
n
t
i
t
y
[
"
E
x
o
p
l
a
n
e
t
"
,
1
0
]
O
u
t
[
1
]
=
K
e
p
l
e
r
4
7
4
b
,
K
e
p
l
e
r
1
4
2
c
,
K
e
p
l
e
r
1
0
9
9
b
,
K
e
p
l
e
r
1
8
1
b
,
K
2
-
7
5
b
,
H
A
T
-
P
-
2
5
b
,
K
e
p
l
e
r
2
7
2
b
,
K
e
p
l
e
r
6
7
5
b
,
K
e
p
l
e
r
1
0
6
0
b
,
H
D
1
6
0
5
c
Only a few have known semimajor axes:
I
n
[
2
]
:
=
E
n
t
i
t
y
V
a
l
u
e
[
%
,
{
"
O
r
b
i
t
P
e
r
i
o
d
"
,
"
S
e
m
i
m
a
j
o
r
A
x
i
s
"
}
]
O
u
t
[
2
]
=
{
1
3
5
.
9
4
9
2
0
3
h
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
}
,
{
1
1
4
.
3
5
9
1
h
,
0
.
0
5
7
a
u
}
,
{
5
2
.
0
7
8
5
0
8
0
h
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
}
,
{
7
5
.
3
6
0
5
3
h
,
0
.
0
4
a
u
}
,
7
.
8
1
9
6
d
a
y
s
,
0
.
0
8
1
a
u
,
{
8
7
.
7
2
8
1
1
h
,
0
.
0
4
6
6
a
u
}
,
{
7
1
.
3
6
1
3
2
h
,
0
.
0
3
8
a
u
}
,
{
5
6
.
1
3
6
9
3
5
9
h
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
}
,
4
6
.
9
1
0
0
4
4
8
8
d
a
y
s
,
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
{
5
.
7
8
4
a
,
3
.
5
2
a
u
}
FInd results for 100 random exoplanets:
I
n
[
3
]
:
=
d
a
t
a
=
E
n
t
i
t
y
V
a
l
u
e
[
R
a
n
d
o
m
E
n
t
i
t
y
[
"
E
x
o
p
l
a
n
e
t
"
,
1
0
0
]
,
{
"
O
r
b
i
t
P
e
r
i
o
d
"
,
"
S
e
m
i
m
a
j
o
r
A
x
i
s
"
}
]
;
Plot semimajor axis against orbit period:
I
n
[
4
]
:
=
L
i
s
t
L
o
g
L
o
g
P
l
o
t
[
d
a
t
a
]
O
u
t
[
4
]
=
Find a fit to the data, removing all cases in the data that contain missing values:
I
n
[
5
]
:
=
F
i
n
d
F
o
r
m
u
l
a
[
D
e
l
e
t
e
M
i
s
s
i
n
g
[
d
a
t
a
,
1
,
1
]
,
p
]
O
u
t
[
5
]
=
1
.
2
2
1
0
7
0
.
6
Q
u
a
n
t
i
t
y
M
a
g
n
i
t
u
d
e
[
p
,
J
u
l
i
a
n
Y
e
a
r
s
]
a
u
The exponent is extremely close to 2/3, validating Kepler's third law.
See Also
OrbitalProperties
Schrödinger Equation for the Linear Harmonic Oscillator
Prefactors for Nondimensionalized Formulas
Nondimensional Form of Black Hole Surface Gravity
Properties of the Planck Radiation Law
Related Symbols
PlanetData
FindFormula
Publisher Information
Contributed by:
Stephen Wolfram